14 research outputs found

    Quantum Fluctuations and the Unruh Effect in Strongly-Coupled Conformal Field Theories

    Full text link
    Through the AdS/CFT correspondence, we study a uniformly accelerated quark in the vacuum of strongly-coupled conformal field theories in various dimensions, and determine the resulting stochastic fluctuations of the quark trajectory. From the perspective of an inertial observer, these are quantum fluctuations induced by the gluonic radiation emitted by the accelerated quark. From the point of view of the quark itself, they originate from the thermal medium predicted by the Unruh effect. We scrutinize the relation between these two descriptions in the gravity side of the correspondence, and show in particular that upon transforming the conformal field theory from Rindler space to the open Einstein universe, the acceleration horizon disappears from the boundary theory but is preserved in the bulk. This transformation allows us to directly connect our calculation of radiation-induced fluctuations in vacuum with the analysis by de Boer et al. of the Brownian motion of a quark that is on average static within a thermal medium. Combining this same bulk transformation with previous results of Emparan, we are also able to compute the stress-energy tensor of the Unruh thermal medium.Comment: 1+31 pages; v2: reference adde

    Expression of Human nPTB Is Limited by Extreme Suboptimal Codon Content

    Get PDF
    Background: The frequency of synonymous codon usage varies widely between organisms. Suboptimal codon content limits expression of viral, experimental or therapeutic heterologous proteins due to limiting cognate tRNAs. Codon content is therefore often adjusted to match codon bias of the host organism. Codon content also varies between genes within individual mammalian species. However, little attention has been paid to the consequences of codon content upon translation of host proteins. Methodology/Principal Findings: In comparing the splicing repressor activities of transfected human PTB and its two tissue-restricted paralogs–nPTB and ROD1–we found that the three proteins were expressed at widely varying levels. nPTB was expressed at 1–3 % the level of PTB despite similar levels of mRNA expression and 74 % amino acid identity. The low nPTB expression was due to the high proportion of codons with A or U at the third codon position, which are suboptimal in human mRNAs. Optimization of the nPTB codon content, akin to the ‘‘humanization’ ’ of foreign ORFs, allowed efficient translation in vivo and in vitro to levels comparable with PTB. We were then able to demonstrate that all three proteins act as splicing repressors. Conclusions/Significance: Our results provide a striking illustration of the importance of mRNA codon content in determining levels of protein expression, even within cells of the natural host species

    Phylogeography and Genetic Variation of Triatoma dimidiata, the Main Chagas Disease Vector in Central America, and Its Position within the Genus Triatoma

    Get PDF
    Chagas disease is a serious parasitic disease of Latin America. Human contamination in poor rural or periurban areas is mainly attributed to haematophagous triatomine insects. Triatoma includes important vector species, as T. dimidiata in Central and Meso-America. DNA sequences, phylogenetic methods and genetic variation analyses are combined in a large interpopulational approach to investigate T. dimidiata and its closest relatives within Triatoma. The phylogeography of Triatoma indicates two colonization lineages northward and southward of the Panama isthmus during ancient periods, with T. dimidiata presenting a large genetic variability related to evolutionary divergences from a Mexican-Guatemalan origin. One clade remained confined to Yucatan, Chiapas, Guatemala and Honduras, with extant descendants deserving species status: T. sp. aff. dimidiata. The second clade gave rise to four subspecies: T. d. dimidiata in Guatemala and Mexico (Chiapas) up to Honduras, Nicaragua, Providencia island, and introduced into Ecuador; T. d. capitata in Panama and Colombia; T. d. maculipennis in Mexico and Guatemala; and T. d. hegneri in Cozumel island. This taxa distinction may facilitate the understanding of the diversity of vectors formerly included under T. dimidiata, their different transmission capacities and the disease epidemiology. Triatoma dimidiata will offer more problems for control than T. infestans in Uruguay, Chile and Brazil, although populations in Ecuador are appropriate targets for insecticide-spraying
    corecore