15 research outputs found

    Caenorhabditis briggsae Recombinant Inbred Line Genotypes Reveal Inter-Strain Incompatibility and the Evolution of Recombination

    Get PDF
    The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes

    Product lambda-doublet ratios as an imprint of chemical reaction mechanism

    Get PDF
    In the last decade, the development of theoretical methods has allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the Λ-doublet states produced by chemical reactions. In particular, recent measurements of the OD((2)Π) product of the O((3)P)+D2 reaction have shown a clear preference for the Π(A') Λ-doublet states, in apparent contradiction with ab initio calculations, which predict a larger reactivity on the A'' potential energy surface. Here we present a method to calculate the Λ-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental Λ-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that the propensity of the Π(A') state is a consequence of the different mechanisms of the reaction on the two concurrent potential energy surfaces

    Observation and interpretation of a time-delayed mechanism in the hydrogen exchange reaction

    No full text
    Extensive theoretical(1-13) and experimental(2,13-22) studies have shown the hydrogen exchange reaction H + H-2 --> H-2 + H to occur predominantly through a 'direct recoil' mechanism: the H-H bonds break and form concertedly while the system passes straight over a collinear transition state, with recoil from the collision causing the H-2 product molecules to scatter backward. Theoretical predictions agree well with experimental observations of this scattering process(15-20,22). Indirect exchange mechanisms involving H-3 intermediates have been suggested to occur as well(8-13), but these are difficult to test because bimolecular reactions cannot be studied by the femtosecond spectroscopies(23) used to monitor unimolecular reactions. Moreover, full quantum simulations of the time evolution of bimolecular reactions have not been performed. For the isotopic variant of the hydrogen exchange reaction, H + D-2 --> HD + D, forward scattering features(21) observed in the product angular distribution have been attributed(21,12) to possible scattering resonances associated with a quasibound collision complex. Here we extend these measurements to a wide range of collision energies and interpret the results using a full time-dependent quantum simulation of the reaction, thus showing that two different reaction mechanisms modulate the measured product angular distribution features. One of the mechanisms is direct and leads to backward scattering, the other is indirect and leads to forward scattering after a delay of about 25 femtoseconds
    corecore