1,703 research outputs found

    Assisted evolution enables HIV-1 to overcome a high trim5α-imposed genetic barrier to rhesus macaque tropism

    Get PDF
    Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5α protein (rhTRIM5α). Initially, we attempted to derive rhTRIM5α-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5α. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5α sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5α sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5α recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5α were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5α sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5α-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5α. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5α on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5α is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Pharmacokinetic targeting of intravenous busulfan reduces conditioning regimen related toxicity following allogeneic hematopoietic cell transplantation for acute myelogenous leukemia

    Get PDF
    Optimal conditioning therapy for hematopoietic cell transplantation (HCT) in acute myelogenous leukemia (AML) remains undefined. We retrospectively compared outcomes of a consecutive series of 51 AML patients treated with oral busulfan (1 mg/kg every 6 hours for 4 days) and cyclophosphamide (60 mg/kg IV × 2 days) - (Bu/Cy) with 100 consecutive AML patients treated with pharmacokinetic targeted IV busulfan (AUC < 6000 μM/L*min per day × 4 days) and fludarabine (40 mg/m2 × 4 days) - (t-IV Bu/Flu). The Bu/Cy and t-IV Bu/Flu groups significantly differed according to donor relation, stem cell source, aGVHD prophylaxis, remission status, primary vs. secondary disease, median age, and % blasts prior to HCT (p < 0.01 for each). Conditioning with t-IV Bu/Flu reduced early toxicity including idiopathic pneumonia syndrome (IPS) and hepatic veno-occlusive disease (VOD). Additionally, the trajectory of early NRM (100 day: 16% vs. 3%, and1 year: 25% vs. 15% for Bu/Cy and t-IV Bu/Flu, respectively) favored t-IV Bu/Flu. Grade II-IV aGVHD (48% vs. 82%, p < 0.0001), as well as moderate/severe cGVHD (7% vs. 40%, p < 0.0001) differed between the Bu/Cy and t-IV Bu/Flu groups, due to the predominance of peripheral blood stem cells in the t-IV Bu/Flu group. Pharmacokinetic targeting of intravenous busulfan in combination with fludarabine is associated with reduced conditioning regimen related toxicity compared to oral busulfan and cyclophosphamide. However, multivariable analysis did not demonstrate significant differences in overall survival (p = 0.78) or non-relapse mortality (p = 0.6) according to conditioning regimen delivered

    Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

    Full text link
    The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However, the recent evidence from Atlas and CMS on a light Higgs scalar with mass m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms -- already highly stressed by the latest Atlas/CMS results on SUSY searches -- are nearly eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV. Furthermore, neutralino annihilation via the A-resonance is essentially ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking term A_0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure

    Polymorphisms of CD16A and CD32 Fcγ receptors and circulating immune complexes in Ménière's disease: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autoimmune diseases with elevated circulating autoantibodies drive tissue damage and the onset of disease. The Fcγ receptors bind IgG subtypes modulating the clearance of circulating immune complexes (CIC). The inner ear damage in Ménière's disease (MD) could be mediated by an immune response driven by CIC. We examined single-nucleotide polymorphism (SNPs) in the CD16A and CD32 genes in patients with MD which may determine a Fcγ receptor with lower binding to CIC.</p> <p>Methods</p> <p>The functional CD16A (FcγRIIIa*559A > C, rs396991) and CD32A (FcγRIIa*519A > G, rs1801274) SNPs were analyzed using PCR-based TaqMan Genotyping Assay in two cohorts of 156 mediterranean and 112 Galicia patients in a case-control study. Data were analyzed by χ<sup>2 </sup>with Fisher's exact test and Cochran-Armitage trend test (CATT). CIC were measured by ELISA for C1q-binding CIC.</p> <p>Results</p> <p>Elevated CIC were found in 7% of patients with MD during the intercrisis period. No differences were found in the allelic frequency for rs396991 or rs1801274 in controls subjects when they were compared with patients with MD from the same geographic area. However, the frequency of AA and AC genotypes of CD16A (rs396991) differed among mediterranean and Galicia controls (Fisher's test, corrected p = 6.9 × 10<sup>-4 </sup>for AA; corrected p = 0.02 for AC). Although genotype AC of the CD16A receptor was significantly more frequent in mediterranean controls than in patients, [Fisher's test corrected p = 0.02; OR = 0.63 (0.44-0.91)], a genetic additive effect for the allele C was not observed (CATT, p = 0.23). Moreover, no differences were found in genotype frequencies for rs396991 between patients with MD and controls from Galicia (CATT, p = 0.14). The allelic frequency of CD32 (rs1801274) was not different between patients and controls either in mediterranean (p = 0.51) or Galicia population (p = 0.11).</p> <p>Conclusions</p> <p>Elevated CIC are not found in most of patients with MD. Functional polymorphisms of CD16A and CD32 genes are not associated with onset of MD.</p

    Novel Escape Mutants Suggest an Extensive TRIM5α Binding Site Spanning the Entire Outer Surface of the Murine Leukemia Virus Capsid Protein

    Get PDF
    After entry into target cells, retroviruses encounter the host restriction factors such as Fv1 and TRIM5α. While it is clear that these factors target retrovirus capsid proteins (CA), recognition remains poorly defined in the absence of structural information. To better understand the binding interaction between TRIM5α and CA, we selected a panel of novel N-tropic murine leukaemia virus (N-MLV) escape mutants by a serial passage of replication competent N-MLV in rhesus macaque TRIM5α (rhTRIM5α)-positive cells using a small percentage of unrestricted cells to allow multiple rounds of virus replication. The newly identified mutations, many of which involve changes in charge, are distributed over the outer ‘top’ surface of N-MLV CA, including the N-terminal β-hairpin, and map up to 29 Ao apart. Biological characterisation with a number of restriction factors revealed that only one of the new mutations affects restriction by human TRIM5α, indicating significant differences in the binding interaction between N-MLV and the two TRIM5αs, whereas three of the mutations result in dual sensitivity to Fv1n and Fv1b. Structural studies of two mutants show that no major changes in the overall CA conformation are associated with escape from restriction. We conclude that interactions involving much, if not all, of the surface of CA are vital for TRIM5α binding

    Brain Rhythms Reveal a Hierarchical Network Organization

    Get PDF
    Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental, computational and theoretical studies have made substantial progress on our understanding of the biophysical mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We hypothesized that if we were able to construct abstract networks, or “virtual brains”, whose dynamics were similar to EEG/MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all reconstructed networks display similar topological features (e.g. structural motifs) and dynamics. We have also reverse-engineered putative diseased brains (epileptic and schizophrenic), in which the oscillatory activity is altered in different ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states display lower complexity than virtual brains modeling normal neural function. We finally discuss the implications of our results for the neurobiology of health and disease

    Risk Factors, Molecular Epidemiology and Outcomes of Ertapenem-Resistant, Carbapenem-Susceptible Enterobacteriaceae: A Case-Case-Control Study

    Get PDF
    Background: Increasing prevalence of ertapenem-resistant, carbapenem-susceptible Enterobacteriaceae (ERE) in Singapore presents a major therapeutic problem. Our objective was to determine risk factors associated with the acquisition of ERE in hospitalized patients; to assess associated patient outcomes; and to describe the molecular characteristics of ERE. Methods: A retrospective case-case-control study was conducted in 2009 at a tertiary care hospital. Hospitalized patients with ERE and those with ertapenem-sensitive Enterobacteriaceae (ESE) were compared with a common control group consisting of patients with no prior gram-negative infections. Risk factors analyzed included demographics; co-morbidities; instrumentation and antibiotic exposures. Two parallel multivariate logistic regression models were performed to identify independent variables associated with ERE and ESE acquisition respectively. Clinical outcomes were compared between ERE and ESE patients. Results: Twenty-nine ERE cases, 29 ESE cases and 87 controls were analyzed. Multivariate logistic regression showed that previous hospitalization (Odds ratio [OR], 10.40; 95 % confidence interval [CI], 2.19–49.20) and duration of fluoroquinolones exposure (OR, 1.18 per day increase; 95 % CI, 1.05–1.34) were unique independent predictors for acquiring ERE. Duration of 4 th-generation cephalosporin exposure was found to predict for ESE acquisition (OR, 1.63 per day increase; 95 % CI, 1.05– 2.54). In-hospital mortality rates and clinical response rates were significantly different between ERE and ESE groups

    Essential function for ErbB3 in breast cancer proliferation

    Get PDF
    The overexpression of the ErbB family of tyrosine kinase receptors is thought to be important in the development of many breast tumours. To date, most attention has focused on the ErbB2 receptor. Now, in a recent report, it has been shown that ErbB3 is a critical partner for the transforming activity of ErbB2 in breast cancer cells. Importantly, the proliferative signals from this transforming complex appear to act via the PI-3 kinase pathway
    corecore