1,151 research outputs found
Synthesizing and tuning chemical reaction networks with specified behaviours
We consider how to generate chemical reaction networks (CRNs) from functional
specifications. We propose a two-stage approach that combines synthesis by
satisfiability modulo theories and Markov chain Monte Carlo based optimisation.
First, we identify candidate CRNs that have the possibility to produce correct
computations for a given finite set of inputs. We then optimise the reaction
rates of each CRN using a combination of stochastic search techniques applied
to the chemical master equation, simultaneously improving the of correct
behaviour and ruling out spurious solutions. In addition, we use techniques
from continuous time Markov chain theory to study the expected termination time
for each CRN. We illustrate our approach by identifying CRNs for majority
decision-making and division computation, which includes the identification of
both known and unknown networks.Comment: 17 pages, 6 figures, appeared the proceedings of the 21st conference
on DNA Computing and Molecular Programming, 201
Isolated and dynamical horizons and their applications
Over the past three decades, black holes have played an important role in
quantum gravity, mathematical physics, numerical relativity and gravitational
wave phenomenology. However, conceptual settings and mathematical models used
to discuss them have varied considerably from one area to another. Over the
last five years a new, quasi-local framework was introduced to analyze diverse
facets of black holes in a unified manner. In this framework, evolving black
holes are modeled by dynamical horizons and black holes in equilibrium by
isolated horizons. We review basic properties of these horizons and summarize
applications to mathematical physics, numerical relativity and quantum gravity.
This paradigm has led to significant generalizations of several results in
black hole physics. Specifically, it has introduced a more physical setting for
black hole thermodynamics and for black hole entropy calculations in quantum
gravity; suggested a phenomenological model for hairy black holes; provided
novel techniques to extract physics from numerical simulations; and led to new
laws governing the dynamics of black holes in exact general relativity.Comment: 77 pages, 12 figures. Typos and references correcte
Neutron Stars in Teleparallel Gravity
In this paper we deal with neutron stars, which are described by a perfect
fluid model, in the context of the teleparallel equivalent of general
relativity. We use numerical simulations to find the relationship between the
angular momentum of the field and the angular momentum of the source. Such a
relation was established for each stable star reached by the numerical
simulation once the code is fed with an equation of state, the central energy
density and the ratio between polar and equatorial radii. We also find a regime
where linear relation between gravitational angular momentum and moment of
inertia (as well as angular velocity of the fluid) is valid. We give the
spatial distribution of the gravitational energy and show that it has a linear
dependence with the squared angular velocity of the source.Comment: 19 pages, 14 figures. arXiv admin note: text overlap with
arXiv:1206.331
The Statistical Mechanics of Horizons and Black Hole Thermodynamics
Although we know that black holes are characterized by a temperature and an
entropy, we do not yet have a satisfactory microscopic ``statistical
mechanical'' explanation for black hole thermodynamics. I describe a new
approach that attributes the thermodynamic properties to ``would-be gauge''
degrees of freedom that become dynamical on the horizon. For the
(2+1)-dimensional black hole, this approach gives the correct entropy. (Talk
given at the Pacific Conference on Gravitation and Cosmology, Seoul, February
1996.)Comment: 11 pages, LaTe
Gravitational Waves from Gravitational Collapse
Gravitational wave emission from the gravitational collapse of massive stars
has been studied for more than three decades. Current state of the art
numerical investigations of collapse include those that use progenitors with
realistic angular momentum profiles, properly treat microphysics issues,
account for general relativity, and examine non--axisymmetric effects in three
dimensions. Such simulations predict that gravitational waves from various
phenomena associated with gravitational collapse could be detectable with
advanced ground--based and future space--based interferometric observatories.Comment: 68 pages including 13 figures; revised version accepted for
publication in Living Reviews in Relativity (http://www.livingreviews.org
Barley grain (1,3;1,4)-β-glucan content:effects of transcript and sequence variation in genes encoding the corresponding synthase and endohydrolase enzymes
The composition of plant cell walls is important in determining cereal end uses. Unlike other widely consumed cereal grains barley is comparatively rich in (1,3;1,4)-β-glucan, a source of dietary fibre. Previous work showed Cellulose synthase-like genes synthesise (1,3;1,4)-β-glucan in several tissues. HvCslF6 encodes a grain (1,3;1,4)-β-glucan synthase, whereas the function of HvCslF9 is unknown. Here, the relationship between mRNA levels of HvCslF6, HvCslF9, HvGlbI (1,3;1,4)-β-glucan endohydrolase, and (1,3;1,4)-β-glucan content was studied in developing grains of four barley cultivars. HvCslF6 was differentially expressed during mid (8-15 DPA) and late (38 DPA) grain development stages while HvCslF9 transcript was only clearly detected at 8-10 DPA. A peak of HvGlbI expression was detected at 15 DPA. Differences in transcript abundance across the three genes could partially explain variation in grain (1,3;1,4)-β-glucan content in these genotypes. Remarkably narrow sequence variation was found within the HvCslF6 promoter and coding sequence and does not explain variation in (1,3;1,4)-β-glucan content. Our data emphasise the genotype-dependent accumulation of (1,3;1,4)-β-glucan during barley grain development and a role for the balance between hydrolysis and synthesis in determining (1,3;1,4)-β-glucan content, and suggests that other regulatory sequences or proteins are likely to be involved in this trait in developing grain.Guillermo Garcia-Gimenez, Joanne Russell, Matthew K. Aubert, Geoffrey B. Fincher, Rachel A. Burton, Robbie Waugh, Matthew R. Tucker, Kelly Housto
Mass and Angular Momentum in General Relativity
We present an introduction to mass and angular momentum in General
Relativity. After briefly reviewing energy-momentum for matter fields, first in
the flat Minkowski case (Special Relativity) and then in curved spacetimes with
or without symmetries, we focus on the discussion of energy-momentum for the
gravitational field. We illustrate the difficulties rooted in the Equivalence
Principle for defining a local energy-momentum density for the gravitational
field. This leads to the understanding of gravitational energy-momentum and
angular momentum as non-local observables that make sense, at best, for
extended domains of spacetime. After introducing Komar quantities associated
with spacetime symmetries, it is shown how total energy-momentum can be
unambiguously defined for isolated systems, providing fundamental tests for the
internal consistency of General Relativity as well as setting the conceptual
basis for the understanding of energy loss by gravitational radiation. Finally,
several attempts to formulate quasi-local notions of mass and angular momentum
associated with extended but finite spacetime domains are presented, together
with some illustrations of the relations between total and quasi-local
quantities in the particular context of black hole spacetimes. This article is
not intended to be a rigorous and exhaustive review of the subject, but rather
an invitation to the topic for non-experts. In this sense we follow essentially
the expositions in Szabados 2004, Gourgoulhon 2007, Poisson 2004 and Wald 84,
and refer the reader interested in further developments to the existing
literature, in particular to the excellent and comprehensive review by Szabados
(2004).Comment: 41 pages. Notes based on the lecture given at the C.N.R.S. "School on
Mass" (June 2008) in Orleans, France. To appear as proceedings in the book
"Mass and Motion in General Relativity", eds. L. Blanchet, A. Spallicci and
B. Whiting. Some comments and references added
Dynamical Boson Stars
The idea of stable, localized bundles of energy has strong appeal as a model
for particles. In the 1950s John Wheeler envisioned such bundles as smooth
configurations of electromagnetic energy that he called {\em geons}, but none
were found. Instead, particle-like solutions were found in the late 1960s with
the addition of a scalar field, and these were given the name {\em boson
stars}. Since then, boson stars find use in a wide variety of models as sources
of dark matter, as black hole mimickers, in simple models of binary systems,
and as a tool in finding black holes in higher dimensions with only a single
killing vector. We discuss important varieties of boson stars, their dynamic
properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in
Relativity; major revision in 201
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
Challenges in identifying barriers to adoption in a theory-based implementation study: lessons for future implementation studies
Background: Exploring barriers to the uptake of research based recommendations into practice is an important part of the development of implementation programmes. Techniques to identify barriers can include use of theory-informed questionnaires and qualitative interviews. Conceptualising and measuring theory-informed factors, and engaging health professionals’ to uncover all potential barriers, can be a difficult task. This paper presents a case study of the process of trying to identify, systematically, the key factors influencing health professionals’ referrals for women diagnosed with mild to moderate postnatal depression for psychological treatment. The paper illustrates how the factors were conceptualised and measured and explores the real world challenges experienced, with implications for future implementation studies. Methods: Theory-informed factors were conceptualised and measured using a questionnaire and interviews. The questionnaire was piloted, before being administered to general practitioners, practice nurses and health visitors working in general practices in one area of the UK NHS. The interviews were conducted with a small sample of general practitioners who had not completed the questionnaire, further exploring factors influencing their referral decisions in the local context. Results: The response rate to the questionnaire was low (19%), despite selecting the recommendation to target through engagement with local stakeholders and surveying local health professionals, and despite using two reminders, an incentive prize, and phone calls to practice managers to bolster response rates. Conclusions: Two significant challenges to achieving higher response rates and successfully exploring local context were identified: the difficulties of developing a robust- but feasible- questionnaire to explore theory-informed factors, and targeting recommendations that are important to policy makers, but which health professionals view as unimportant. This case study highlights the “trade-off” between scientifically rigorous collection of data against the pragmatism and flexibility requirements of “real world” implementation. Future implementation studies should explore different ways of identifying factors influencing the adoption of recommendations to bridge this gulf
- …
