48 research outputs found

    Evaluation of nutritional status in pediatric intensive care unit patients: the results of a multicenter, prospective study in Turkey

    Get PDF
    IntroductionMalnutrition is defined as a pathological condition arising from deficient or imbalanced intake of nutritional elements. Factors such as increasing metabolic demands during the disease course in the hospitalized patients and inadequate calorie intake increase the risk of malnutrition. The aim of the present study is to evaluate nutritional status of patients admitted to pediatric intensive care units (PICU) in Turkey, examine the effect of nutrition on the treatment process and draw attention to the need for regulating nutritional support of patients while continuing existing therapies.Material and MethodIn this prospective multicenter study, the data was collected over a period of one month from PICUs participating in the PICU Nutrition Study Group in Turkey. Anthropometric data of the patients, calorie intake, 90-day mortality, need for mechanical ventilation, length of hospital stay and length of stay in intensive care unit were recorded and the relationship between these parameters was examined.ResultsOf the 614 patients included in the study, malnutrition was detected in 45.4% of the patients. Enteral feeding was initiated in 40.6% (n = 249) of the patients at day one upon admission to the intensive care unit. In the first 48 h, 86.82% (n = 533) of the patients achieved the target calorie intake, and 81.65% (n = 307) of the 376 patients remaining in the intensive care unit achieved the target calorie intake at the end of one week. The risk of mortality decreased with increasing upper mid-arm circumference and triceps skin fold thickness Z-score (OR = 0.871/0.894; p = 0.027/0.024). The risk of mortality was 2.723 times higher in patients who did not achieve the target calorie intake at first 48 h (p = 0.006) and the risk was 3.829 times higher in patients who did not achieve the target calorie intake at the end of one week (p = 0.001). The risk of mortality decreased with increasing triceps skin fold thickness Z-score (OR = 0.894; p = 0.024).ConclusionTimely and appropriate nutritional support in critically ill patients favorably affects the clinical course. The results of the present study suggest that mortality rate is higher in patients who fail to achieve the target calorie intake at first 48 h and day seven of admission to the intensive care unit. The risk of mortality decreases with increasing triceps skin fold thickness Z-score

    Probabilistic sensitivity of base-isolated buildings to uncertainties

    No full text
    Characteristic parameter values of seismic isolators deviate from their nominal design values dile to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects

    Bringing Probabilistic Analysis Perspective into Structural Engineering Education: Use of Monte Carlo Simulations

    No full text
    In structural engineering education, particularly at the undergraduate level, it is customary to teach analysis of structures with a deterministic approach where applied loads are assumed to be constant. The possibility of variability in these loads is typically taken into account by using load amplification factors at the design stage. Unfortunately, these load factors are accepted by students without questioning what they really are. Besides other complex methods, use of Monte Carlo Simulation Method has the potential to teach students probabilistic structural analysis without expecting a solid background in the theory of probability. As a final outcome, it is expected that structural engineering students will gain a new perspective aside from their traditional deterministic perception of structural analysis. In this article, use of Monte Carlo Simulation Method in teaching probabilistic structural analysis is demonstrated via examples with different complexity levels including a simple beam under gravity loading and a frame under combined gravity and earthquake loads. Proposed subject was taught at different classes of different levels varying from Sophomore to Graduate level students and a very positive feedback was obtained. It is concluded that Monte Carlo Simulation can be used to bring a probabilistic analysis perspective to structural engineering education
    corecore