290 research outputs found

    Photon-jet correlations in pppp and ppˉp \bar p collisions

    Full text link
    We compare results of the ktk_t-factorization approach and the next-to-leading order collinear-factorization approach for photon-jet correlations in pppp and ppˉp \bar p collisions at RHIC and Tevatron energies. We discuss correlations in the azimuthal angle as well as in the two-dimensional space of transverse momentum of photon and jet. Different unintegrated parton distributions (UPDF) are included in the ktk_t-factorization approach. The results depend on UPDFs used. The standard collinear approach gives cross section comparable to the ktk_t-factorization approach. For correlations of the photon and any jet the NLO contributions dominate at relatively small azimuthal angles as well as for asymmetric transverse momenta. For correlations of the photon with the leading jet (the one having the biggest transverse momentum) the NLO approach gives zero contribution at ϕ−<π/2\phi_{-} < \pi/2 which opens a possibility to study higher-order terms and/or UPDFs in this region.Comment: 14 pages, 17 figure

    Extending scientific computing system with structural quantum programming capabilities

    Full text link
    We present a basic high-level structures used for developing quantum programming languages. The presented structures are commonly used in many existing quantum programming languages and we use quantum pseudo-code based on QCL quantum programming language to describe them. We also present the implementation of introduced structures in GNU Octave language for scientific computing. Procedures used in the implementation are available as a package quantum-octave, providing a library of functions, which facilitates the simulation of quantum computing. This package allows also to incorporate high-level programming concepts into the simulation in GNU Octave and Matlab. As such it connects features unique for high-level quantum programming languages, with the full palette of efficient computational routines commonly available in modern scientific computing systems. To present the major features of the described package we provide the implementation of selected quantum algorithms. We also show how quantum errors can be taken into account during the simulation of quantum algorithms using quantum-octave package. This is possible thanks to the ability to operate on density matrices

    Scaling-up beginning farmers for wholesale production

    Get PDF
    With nearly 15 million people that live within 250 miles of Kansas City, the demand for local food is increasing. Local beginning farmers in the region want to reach an emerging wholesale market. However, selling directly to consumers demands different skills than the wholesale market requires. There are many educational programs offered in the region that are focused on direct to consumer sales. Unfortunately, there is a gap in educational programs that are offered to support beginning farmers that wish to expand into wholesale markets. In 2018, the Beginning Farmer Wholesale Project was started within the Growing Growers Kansas City program in congruence with the overall mission to improve the skills and livelihoods of the region’s growers. The project offers support and training to beginning farmers as they begin to navigate new market opportunities. It provides on-farm technical assistance, mentorship, opportunities to connect to wholesale buyers, a workshop series, a manual and an extensive foodshed GIS map. The ongoing project has seen several contributions to improving farmer access to wholesale markets. As of 2020, six workshops have been conducted that have covered a variety of farm production and marketing skills. Six farmer mentees have enrolled in the mentor program which enlists nine farmer mentors from across the region. Over twenty farmers have utilized the technical assistance service on their Kansas and Missouri farm operations and the farmer buyer matching program has resulted in thirteen beginning farmers gaining access to new markets. The project highlights the value of collaboration among organizations and the importance of offering multiple farmer services in order to improve wholesale access

    Markovian MC simulation of QCD evolution at NLO level with minimum k_T

    Full text link
    We present two Monte Carlo algorithms of the Markovian type which solve the modified QCD evolution equations at the NLO level. The modifications with respect to the standard DGLAP evolution concern the argument of the strong coupling constant alpha_S. We analyze the z - dependent argument and then the k_T - dependent one. The evolution time variable is identified with the rapidity. The two algorithms are tested to the 0.05% precision level. We find that the NLO corrections in the evolution of parton momentum distributions with k_T - dependent coupling constant are of the order of 10 to 20%, and in a small x region even up to 30%, with respect to the LO contributions.Comment: 32 pages, 9 pdf figure

    Solution of the Kwiecinski evolution equations for unintegrated parton distributions using the Mellin transform

    Full text link
    The Kwiecinski equations for the QCD evolution of the unintegrated parton distributions in the transverse-coordinate space (b) are analyzed with the help of the Mellin-transform method. The equations are solved numerically in the general case, as well as in a small-b expansion which converges fast for b Lambda_QCD sufficiently small. We also discuss the asymptotic limit of large bQ and show that the distributions generated by the evolution decrease with b according to a power law. Numerical results are presented for the pion distributions with a simple valence-like initial condition at the low scale, following from chiral large-N_c quark models. We use two models: the Spectral Quark Model and the Nambu--Jona-Lasinio model. Formal aspects of the equations, such as the analytic form of the b-dependent anomalous dimensions, their analytic structure, as well as the limits of unintegrated parton densities at x -> 0, x -> 1, and at large b, are discussed in detail. The effect of spreading of the transverse momentum with the increasing scale is confirmed, with growing asymptotically as Q^2 alpha(Q^2). Approximate formulas for for each parton species is given, which may be used in practical applications.Comment: 18 pages, 6 figures, RevTe

    Complex X chromosome rearrangement associated with multiorgan autoimmunity

    Get PDF
    BACKGROUND: Turner syndrome, a congenital condition that affects 1/2,500 births, results from absence or structural alteration of the second sex chromosome. Turner syndrome is usually associated with short stature, gonadal dysgenesis and variable dysmorphic features. The classical 45,X karyotype accounts approximately for half of all patients, the remainder exhibit mosaicism or structural abnormalities of the X chromosome. However, complex intra-X chromosomal rearrangements involving more than three breakpoints are extremely rare. RESULTS: We present a unique case of a novel complex X chromosome rearrangement in a young female patient presenting successively a wide range of autoimmune diseases including insulin dependent diabetes mellitus, Hashimoto's thyroiditis, celiac disease, anaemia perniciosa, possible inner ear disease and severe hair loss. For the genetic evaluation, conventional cytogenetic analysis and FISH with different X specific probes were initially performed. The complexity of these results and the variety of autoimmune problems of the patient prompted us to identify the exact composition and breakpoints of the rearranged X as well as methylation status of the X chromosomes. The high resolution array-CGH (assembly GRCh37/hg19) detected single copy for the whole chromosome X short arm. Two different sized segments of Xq arm were present in three copies: one large size of 80,3 Mb from Xq11.1 to Xq27.3 region and another smaller (11,1 Mb) from Xq27.3 to Xq28 region. An 1,6 Mb Xq27.3 region of the long arm was present in two copies. Southern blot analysis identified a skewed X inactivation with approximately 70:30 % ratios of methylated/unmethylated fragments. The G-band and FISH patterns of the rearranged X suggested the aspect of a restructured i(Xq) chromosome which was shattered and fortuitously repaired. The X-STR genotype analysis of the family detected that the patient inherited intact maternal X chromosome and a rearranged paternal X chromosome. The multiple Xq breakages and fusions as well as inverted duplication would have been expected to cause a severe Turner phenotype. However, the patient lacks many of the classic somatic features of Turner syndrome, instead she presented multiorgan autoimmune diseases. CONCLUSIONS: The clinical data of the presented patient suggest that fragmentation of the i(Xq) chromosome elevates the risk of autoimmune diseases
    • …
    corecore