290 research outputs found
Channeling in helium ion microscopy: Mapping of crystal orientation
Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a\ud
competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling\ud
through the crystal structure of the bulk of the material can occur.\ud
Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface\ud
information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of\ud
channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict\ud
channeling maxima.\ud
Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve\ud
maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be\ud
used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner
The Atomic Slide Puzzle: Self-Diffusion of an Impure Atom
In a series of recent papers van Gastel et al have presented first
experimental evidence that impure, Indium atoms, embedded into the first layer
of a Cu(001) surface, are not localized within the close-packed surface layers
but make concerted, long excursions visualized in a series of STM images. Such
excursions occur due to continuous reshuffling of the surface following the
position exchanges of both impure and host atoms with the naturally occuring
surface vacancies. Van Gastel et al have also formulated an original
lattice-gas type model with asymmetric exchange probabilities, whose numerical
solution is in a good agreement with the experimental data. In this paper we
propose an exact lattice solution of several versions of this model.Comment: Latex, 4 pages, 2 figures, to appear in Phys. Rev. E (RC
Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism
Background: Helium ion microscopy is a new high-performance alternative to classical scanning electron microscopy. It provides superior resolution and high surface sensitivity by using secondary electrons.\ud
\ud
Results: We report on a new contrast mechanism that extends the high surface sensitivity that is usually achieved in secondary electron images, to backscattered helium images. We demonstrate how thin organic and inorganic layers as well as self-assembled monolayers can be visualized on heavier element substrates by changes in the backscatter yield. Thin layers of light elements on heavy substrates should have a negligible direct influence on backscatter yields. However, using simple geometric calculations of the opaque crystal fraction, the contrast that is observed in the images can be interpreted in terms of changes in the channeling probability.\ud
\ud
Conclusion: The suppression of ion channeling into crystalline matter by adsorbed thin films provides a new contrast mechanism for HIM. This dechanneling contrast is particularly well suited for the visualization of ultrathin layers of light elements on heavier substrates. Our results also highlight the importance of proper vacuum conditions for channeling-based experimental methods\u
Process algebra for event-driven runtime verification: a case study of wireless network management
Runtime verification is analysis based on information extracted
from a running system. Traditionally this involves reasoning
about system states, for example using trace predicates. We have been
investigating runtime verification for event-driven systems and in that
context we propose a higher level of abstraction can be useful, namely
reasoning at the level of user-perceived system events. And when considering
events, then the natural formalism for verification is a form of
process algebra
Spinodal decomposition driven formation of Pt-nanowires on Ge(001)
Using low energy electron microscopy, we have found that the deposition of Pt on Ge(001) leads to the formation of a surface confined eutectic liquid when the system is heated above 980 K. From the bulk phase diagram we derive the composition of the eutectic phase: GePt. Upon solidification and further cooling down, two distinct types of terrace emerge, the so-called α and β terraces, which have been assigned previously as relatively Pt-poor and Pt-rich, respectively. Immediately after solidification β terraces fully cover the surface, while further cooling leads to their partial transformation into α terraces. Subsequently, Pt nanowire domains nucleate and grow exclusively on β terraces at about 600 K. The results are discussed using spinodal decomposition concepts and reveal a new pathway for nanowire formation
Nothing moves a surface: vacancy mediated surface diffusion
We report scanning tunneling microscopy observations, which imply that all
atoms in a close-packed copper surface move frequently, even at room
temperature. Using a low density of embedded indium `tracer' atoms, we
visualize the diffusive motion of surface atoms. Surprisingly, the indium atoms
seem to make concerted, long jumps. Responsible for this motion is an ultra-low
density of surface vacancies, diffusing rapidly within the surface. This
interpretation is supported by a detailed analysis of the displacement
distribution of the indium atoms, which reveals a shape characteristic for the
vacancy mediated diffusion mechanism that we propose.Comment: 4 pages; for associated movie, see
http://www-lion.leidenuniv.nl/sections/cm/groups/interface/projects/therm
Digging gold: keV He+ ion interaction with Au
Helium ion microscopy (HIM) was used to investigate the interaction of a focused He+ ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He+ ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discusse
Selecting a single orientation for millimeter sized graphene sheets
We have used Low Energy Electron Microscopy (LEEM) and Photo Emission
Electron Microscopy (PEEM) to study and improve the quality of graphene films
grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated
temperature already yields graphene sheets that are uniform and of monatomic
thickness. Besides domains that are aligned with respect to the substrate,
other rotational variants grow. Cyclic growth exploiting the faster growth and
etch rates of the rotational variants, yields films that are 99 % composed of
aligned domains. Precovering the substrate with a high density of graphene
nuclei prior to CVD yields pure films of aligned domains extending over
millimeters. Such films can be used to prepare cluster-graphene hybrid
materials for catalysis or nanomagnetism and can potentially be combined with
lift-off techniques to yield high-quality, graphene based electronic devices
- …