290 research outputs found

    Channeling in helium ion microscopy: Mapping of crystal orientation

    Get PDF
    Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a\ud competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling\ud through the crystal structure of the bulk of the material can occur.\ud Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface\ud information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of\ud channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict\ud channeling maxima.\ud Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve\ud maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be\ud used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner

    The Atomic Slide Puzzle: Self-Diffusion of an Impure Atom

    Full text link
    In a series of recent papers van Gastel et al have presented first experimental evidence that impure, Indium atoms, embedded into the first layer of a Cu(001) surface, are not localized within the close-packed surface layers but make concerted, long excursions visualized in a series of STM images. Such excursions occur due to continuous reshuffling of the surface following the position exchanges of both impure and host atoms with the naturally occuring surface vacancies. Van Gastel et al have also formulated an original lattice-gas type model with asymmetric exchange probabilities, whose numerical solution is in a good agreement with the experimental data. In this paper we propose an exact lattice solution of several versions of this model.Comment: Latex, 4 pages, 2 figures, to appear in Phys. Rev. E (RC

    Imaging ultra thin layers with helium ion microscopy: Utilizing the channeling contrast mechanism

    Get PDF
    Background: Helium ion microscopy is a new high-performance alternative to classical scanning electron microscopy. It provides superior resolution and high surface sensitivity by using secondary electrons.\ud \ud Results: We report on a new contrast mechanism that extends the high surface sensitivity that is usually achieved in secondary electron images, to backscattered helium images. We demonstrate how thin organic and inorganic layers as well as self-assembled monolayers can be visualized on heavier element substrates by changes in the backscatter yield. Thin layers of light elements on heavy substrates should have a negligible direct influence on backscatter yields. However, using simple geometric calculations of the opaque crystal fraction, the contrast that is observed in the images can be interpreted in terms of changes in the channeling probability.\ud \ud Conclusion: The suppression of ion channeling into crystalline matter by adsorbed thin films provides a new contrast mechanism for HIM. This dechanneling contrast is particularly well suited for the visualization of ultrathin layers of light elements on heavier substrates. Our results also highlight the importance of proper vacuum conditions for channeling-based experimental methods\u

    Process algebra for event-driven runtime verification: a case study of wireless network management

    Get PDF
    Runtime verification is analysis based on information extracted from a running system. Traditionally this involves reasoning about system states, for example using trace predicates. We have been investigating runtime verification for event-driven systems and in that context we propose a higher level of abstraction can be useful, namely reasoning at the level of user-perceived system events. And when considering events, then the natural formalism for verification is a form of process algebra

    Spinodal decomposition driven formation of Pt-nanowires on Ge(001)

    Get PDF
    Using low energy electron microscopy, we have found that the deposition of Pt on Ge(001) leads to the formation of a surface confined eutectic liquid when the system is heated above 980 K. From the bulk phase diagram we derive the composition of the eutectic phase: Ge0.78_{0.78}Pt0.22_{0.22}. Upon solidification and further cooling down, two distinct types of terrace emerge, the so-called α and β terraces, which have been assigned previously as relatively Pt-poor and Pt-rich, respectively. Immediately after solidification β terraces fully cover the surface, while further cooling leads to their partial transformation into α terraces. Subsequently, Pt nanowire domains nucleate and grow exclusively on β terraces at about 600 K. The results are discussed using spinodal decomposition concepts and reveal a new pathway for nanowire formation

    Nothing moves a surface: vacancy mediated surface diffusion

    Get PDF
    We report scanning tunneling microscopy observations, which imply that all atoms in a close-packed copper surface move frequently, even at room temperature. Using a low density of embedded indium `tracer' atoms, we visualize the diffusive motion of surface atoms. Surprisingly, the indium atoms seem to make concerted, long jumps. Responsible for this motion is an ultra-low density of surface vacancies, diffusing rapidly within the surface. This interpretation is supported by a detailed analysis of the displacement distribution of the indium atoms, which reveals a shape characteristic for the vacancy mediated diffusion mechanism that we propose.Comment: 4 pages; for associated movie, see http://www-lion.leidenuniv.nl/sections/cm/groups/interface/projects/therm

    Digging gold: keV He+ ion interaction with Au

    Get PDF
    Helium ion microscopy (HIM) was used to investigate the interaction of a focused He+ ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He+ ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discusse

    Selecting a single orientation for millimeter sized graphene sheets

    Get PDF
    We have used Low Energy Electron Microscopy (LEEM) and Photo Emission Electron Microscopy (PEEM) to study and improve the quality of graphene films grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated temperature already yields graphene sheets that are uniform and of monatomic thickness. Besides domains that are aligned with respect to the substrate, other rotational variants grow. Cyclic growth exploiting the faster growth and etch rates of the rotational variants, yields films that are 99 % composed of aligned domains. Precovering the substrate with a high density of graphene nuclei prior to CVD yields pure films of aligned domains extending over millimeters. Such films can be used to prepare cluster-graphene hybrid materials for catalysis or nanomagnetism and can potentially be combined with lift-off techniques to yield high-quality, graphene based electronic devices
    • …
    corecore