49 research outputs found
Characterization of Leishmania spp. causing cutaneous leishmaniasis in Manaus, Amazonas, Brazil
In the State of Amazonas, American tegumentary leishmaniasis is endemic and presents a wide spectrum of clinical variability due to the large diversity of circulating species in the region. Isolates from patients in Manaus and its metropolitan region were characterized using monoclonal antibodies and isoenzymes belonging to four species of the parasite: Leishmania (Viannia) guyanensis, 73% (153/209); Leishmania (Viannia) braziliensis, 14% (30/209); Leishmania (Leishmania) amazonensis, 8% (17/209); and Leishmania (Viannia) naiffii, 4% (9/209). The most prevalent species was L. (V.) guyanensis. The principal finding of this study was the important quantity of infections involving more than one parasite species, representing 14% (29/209) of the total. The findings obtained in this work regarding the parasite are further highlighted by the fact that these isolates were obtained from clinical samples collected from single lesions
Caracterização isoenzimática de isolados humanos de Leishmania sp (Kinetoplastida: Trypanosomatidae) dos municípios de Rio Preto da Eva e Manaus, Estado do Amazonas
Twenty-three isolates of Leishmania sp from patients in the municipalities of Rio Preto da Eva and Manaus were characterized and identified by means of isoenzyme electrophoresis and the degree of similarity between the organisms was analyzed. The results indicated that Leishmania guyanensis and Leishmania naiffi were present in these two environments and that the Leishmania naiffi samples were heterogenous
Recommended from our members
Endocrine disruptors and obesity
The purpose of this review is to summarise current evidence that some environmental chemicals may be able to interfere in endocrine regulation of energy metabolism and adipose tissue structure. Recent findings demonstrate that such endocrine disrupting chemicals, termed “obesogens”, can promote adipogenesis and cause weight gain. This includes compounds to which the human population is exposed in daily life through their use in pesticides/herbicides, industrial and household products, plastics, detergents, flame retardants and ingredients in personal care products. Animal models and epidemiological studies have shown that an especially sensitive time for exposure is in utero or the neonatal period. In summarising the actions of obesogens, it is noteworthy that as their structures are mainly lipophilic, their ability to increase fat deposition has the added consequence of increasing the capacity for their own retention. This has the potential for a vicious spiral not only of increasing obesity but also increasing retention of other lipophilic pollutant chemicals with an even broader range of adverse actions. This might offer an explanation as to why obesity is an underlying risk factor for so many diseases including cancer