26 research outputs found

    Restaurant outbreak of Legionnaires' disease associated with a decorative fountain: an environmental and case-control study

    Get PDF
    BACKGROUND: From June to November 2005, 18 cases of community-acquired Legionnaires' disease (LD) were reported in Rapid City South Dakota. We conducted epidemiologic and environmental investigations to identify the source of the outbreak. METHODS: We conducted a case-control study that included the first 13 cases and 52 controls randomly selected from emergency department records and matched on underlying illness. We collected information about activities of case-patients and controls during the 14 days before symptom onset. Environmental samples (n = 291) were cultured for Legionella. Clinical and environmental isolates were compared using monoclonal antibody subtyping and sequence based typing (SBT). RESULTS: Case-patients were significantly more likely than controls to have passed through several city areas that contained or were adjacent to areas with cooling towers positive for Legionella. Six of 11 case-patients (matched odds ratio (mOR) 32.7, 95% CI 4.7-infinity) reported eating in Restaurant A versus 0 controls. Legionella pneumophila serogroup 1 was isolated from four clinical specimens: 3 were Benidorm type strains and 1 was a Denver type strain. Legionella were identified from several environmental sites including 24 (56%) of 43 cooling towers tested, but only one site, a small decorative fountain in Restaurant A, contained Benidorm, the outbreak strain. Clinical and environmental Benidorm isolates had identical SBT patterns. CONCLUSION: This is the first time that small fountain without obvious aerosol-generating capability has been implicated as the source of a LD outbreak. Removal of the fountain halted transmission

    Description of novel resistance islands harbouring blaCTX-M-2 in IncC type 2 plasmids

    No full text
    Objectives: We sequenced two IncA/C plasmids harbouring blaCTX-M-2 in Klebsiella pneumoniae clinical isolates and compared their antibiotic resistance islands. Methods: Transconjugants were obtained from two clinical K. pneumoniae isolates harbouring blaCTX-M-2. Plasmid DNA from transconjugants underwent short-read whole-genome sequencing, reads were assembled, and gaps were closed by PCR and sequencing. Determination of plasmid replicons, antibiotic resistance genes, identification and characterisation of insertion sequence (IS) elements, and comparison with publicly available plasmid sequences were performed. Results: blaCTX-M-2 was located in a complex class 1 integron In35::ISCR1::blaCTX-M-2, inserted in two different transposons designated Tn7057 and Tn7058, that reside in the resistance islands of plasmids pUR-KP0923 and pUR-KP1025, respectively. The general modules of both transposons were In35::ISCR1::blaCTX-M-2\u2013Tn1000-like\u2013Tn2*\u2013ISKpn11-12-13 variable module\u2013\u394Tn21. In Tn7057 there was \u394IS10R\u2013catA2 associated with an additional ISKpn13. Both plasmids belonged to IncC type 2 and ST3. pUR-KP0923 was 167 138 bp in length and had a 37 926-bp resistance island at position 4 (RI-4). Plasmid pUR-KP1025 was 168 128 bp with a RI-4 of 36 222 bp. Conclusion: This report describes the molecular nature of two transposons (Tn7057 and Tn7058) harbouring blaCTX-M-2 that reside in IncC type 2 ST3 plasmids. These transposons mediate resistance to oxyimino-cephalosporins, gentamicin and, in the case of Tn7057, chloramphenicol. CTX-M-2 is an important extended-spectrum \u3b2-lactamase (ESBL) to South American epidemiology. It is remarkable that despite being only two plasmid sequences, the information revealed here could contribute to a better understanding of the resistance islands from IncC type 2 plasmids

    Novel Resistance Regions Carrying TnaphA6, blaVIM-2, and blaPER-1, Embedded in an ISPa40-Derived Transposon from Two Multi-Resistant Pseudomonas aeruginosa Clinical Isolates

    No full text
    Antibiotic resistance is an alarming problem throughout the world and carbapenem-resistant Pseudomonas aeruginosa has been cataloged as critical in the World Health Organization list of microorganisms in urgent need for the development of new antimicrobials. In this work, we describe two novel resistance regions responsible for conferring a multidrug resistance phenotype to two clinical isolates of P. aeruginosa (Pa873 and Pa6415) obtained from patients hospitalized in the ICU of University Hospital of Uruguay. Bacterial identification and antibiotic susceptibility tests were performed using MALDI-TOF and the Vitek 2 system, respectively. WGS was performed for both isolates using Oxford Nanopore Technologies and Illumina and processed by means of hybrid assembly. Both isolates were resistant to ceftazidime, cefepime, piperacillin–tazobactam, aztreonam, and imipenem. Strain Pa6415 also showed resistance to ciprofloxacin. Both strains displayed MICs below the susceptibility breakpoint for CAZ-AVI plus 4 mg/L of aztreonam as well as cefiderocol. Both resistance regions are flanked by the left and right inverted repeats of ISPa40 in two small regions spanning 39.3 and 35.6 kb, for Pa6415 and Pa873, respectively. The resistance region of Pa6415 includes TnaphA6, and the new Tn7516 consists of IRi, In899, qacEΔ1-sul1-ISCR1, qnrVC6-ISCR1-bla-qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR. On the other hand, the resistance region of Pa873 includes Tnaph6 and the new Tn7517 (IRi, In899, qacEΔ1-sul1, ISCR1–bla–qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR). It is necessary to monitor the emergence of genetic structures that threaten to invalidate the available therapeutic resources.This research received no external fundin

    Novel Resistance Regions Carrying TnaphA6, blaVIM-2, and blaPER-1, Embedded in an ISPa40-Derived Transposon from Two Multi-Resistant Pseudomonas aeruginosa Clinical Isolates

    No full text
    Antibiotic resistance is an alarming problem throughout the world and carbapenem-resistant Pseudomonas aeruginosa has been cataloged as critical in the World Health Organization list of microorganisms in urgent need for the development of new antimicrobials. In this work, we describe two novel resistance regions responsible for conferring a multidrug resistance phenotype to two clinical isolates of P. aeruginosa (Pa873 and Pa6415) obtained from patients hospitalized in the ICU of University Hospital of Uruguay. Bacterial identification and antibiotic susceptibility tests were performed using MALDI-TOF and the Vitek 2 system, respectively. WGS was performed for both isolates using Oxford Nanopore Technologies and Illumina and processed by means of hybrid assembly. Both isolates were resistant to ceftazidime, cefepime, piperacillin–tazobactam, aztreonam, and imipenem. Strain Pa6415 also showed resistance to ciprofloxacin. Both strains displayed MICs below the susceptibility breakpoint for CAZ-AVI plus 4 mg/L of aztreonam as well as cefiderocol. Both resistance regions are flanked by the left and right inverted repeats of ISPa40 in two small regions spanning 39.3 and 35.6 kb, for Pa6415 and Pa873, respectively. The resistance region of Pa6415 includes TnaphA6, and the new Tn7516 consists of IRi, In899, qacEΔ1-sul1-ISCR1, qnrVC6-ISCR1-blaPER-1-qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR. On the other hand, the resistance region of Pa873 includes Tnaph6 and the new Tn7517 (IRi, In899, qacEΔ1-sul1, ISCR1–blaPER-1–qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR). It is necessary to monitor the emergence of genetic structures that threaten to invalidate the available therapeutic resources

    Novel Resistance Regions Carrying Tn<i>aphA6</i>, <i>bla</i><sub>VIM-2</sub>, and <i>bla</i><sub>PER-1</sub>, Embedded in an IS<i>Pa40</i>-Derived Transposon from Two Multi-Resistant <i>Pseudomonas aeruginosa</i> Clinical Isolates

    No full text
    Antibiotic resistance is an alarming problem throughout the world and carbapenem-resistant Pseudomonas aeruginosa has been cataloged as critical in the World Health Organization list of microorganisms in urgent need for the development of new antimicrobials. In this work, we describe two novel resistance regions responsible for conferring a multidrug resistance phenotype to two clinical isolates of P. aeruginosa (Pa873 and Pa6415) obtained from patients hospitalized in the ICU of University Hospital of Uruguay. Bacterial identification and antibiotic susceptibility tests were performed using MALDI-TOF and the Vitek 2 system, respectively. WGS was performed for both isolates using Oxford Nanopore Technologies and Illumina and processed by means of hybrid assembly. Both isolates were resistant to ceftazidime, cefepime, piperacillin–tazobactam, aztreonam, and imipenem. Strain Pa6415 also showed resistance to ciprofloxacin. Both strains displayed MICs below the susceptibility breakpoint for CAZ-AVI plus 4 mg/L of aztreonam as well as cefiderocol. Both resistance regions are flanked by the left and right inverted repeats of ISPa40 in two small regions spanning 39.3 and 35.6 kb, for Pa6415 and Pa873, respectively. The resistance region of Pa6415 includes TnaphA6, and the new Tn7516 consists of IRi, In899, qacEΔ1-sul1-ISCR1, qnrVC6-ISCR1-blaPER-1-qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR. On the other hand, the resistance region of Pa873 includes Tnaph6 and the new Tn7517 (IRi, In899, qacEΔ1-sul1, ISCR1–blaPER-1–qacEΔ1-sul1, araJ-like, IS481-like tnpA, ISPa17, and IRR). It is necessary to monitor the emergence of genetic structures that threaten to invalidate the available therapeutic resources
    corecore