3,212 research outputs found
Spectral properties of a generalized chGUE
We consider a generalized chiral Gaussian Unitary Ensemble (chGUE) based on a
weak confining potential. We study the spectral correlations close to the
origin in the thermodynamic limit. We show that for eigenvalues separated up to
the mean level spacing the spectral correlations coincide with those of chGUE.
Beyond this point, the spectrum is described by an oscillating number variance
centered around a constant value. We argue that the origin of such a rigid
spectrum is due to the breakdown of the translational invariance of the
spectral kernel in the bulk of the spectrum. Finally, we compare our results
with the ones obtained from a critical chGUE recently reported in the
literature. We conclude that our generalized chGUE does not belong to the same
class of universality as the above mentioned model.Comment: 12 pages, 3 figure
Analysis of telephone network traffic based on a complex user network
The traffic in telephone networks is analyzed in this paper. Unlike the
classical traffic analysis where call blockings are due to the limited channel
capacity, we consider here a more realistic cause for call blockings which is
due to the way in which users are networked in a real-life human society.
Furthermore, two kinds of user network, namely, the fully-connected user
network and the scale-free network, are employed to model the way in which
telephone users are connected. We show that the blocking probability is
generally higher in the case of the scale-free user network, and that the
carried traffic intensity is practically limited not only by the network
capacity but also by the property of the user network.Comment: 17 pages, 9 figures, accepted for Physica
Gravitons and Lightcone Fluctuations
Gravitons in a squeezed vacuum state, the natural result of quantum creation
in the early universe or by black holes, will introduce metric fluctuations.
These metric fluctuations will introduce fluctuations of the lightcone. It is
shown that when the various two-point functions of a quantized field are
averaged over the metric fluctuations, the lightcone singularity disappears for
distinct points. The metric averaged functions remain singular in the limit of
coincident points. The metric averaged retarded Green's function for a massless
field becomes a Gaussian which is nonzero both inside and outside of the
classical lightcone. This implies some photons propagate faster than the
classical light speed, whereas others propagate slower. The possible effects of
metric fluctuations upon one-loop quantum processes are discussed and
illustrated by the calculation of the one-loop electron self-energy.Comment: 18pp, LATEX, TUTP-94-1
WMAP constraints on scalar-tensor cosmology and the variation of the gravitational constant
We present observational constraints on a scalar-tensor gravity theory by
test for CMB anisotropy spectrum. We compare the WMAP temperature
power spectrum with the harmonic attractor model, in which the scalar field has
its harmonic effective potential with curvature in the Einstein
conformal frame and the theory relaxes toward Einstein gravity with time. We
found that the present value of the scalar coupling, i.e. the present level of
deviation from Einstein gravity , is bounded to be smaller than
(), and () for . This constraint is much stronger than the bound from the solar
system experiments for large models, i.e., and 0.3 in
and limits, respectively. Furthermore, within the framework
of this model, the variation of the gravitational constant at the recombination
epoch is constrained as , and
.Comment: 7 page
Phase ordering in chaotic map lattices with conserved dynamics
Dynamical scaling in a two-dimensional lattice model of chaotic maps, in
contact with a thermal bath, is numerically studied. The model here proposed is
equivalent to a conserved Ising model with coupligs which fluctuate over the
same time scale as spin moves. When couplings fluctuations and thermal
fluctuations are both important, this model does not belong to the class of
universality of a Langevin equation known as model B; the scaling exponents are
continuously varying with the temperature and depend on the map used. The
universal behavior of model B is recovered when thermal fluctuations are
dominant.Comment: 6 pages, 4 figures. Revised version accepted for publication on
Physical Review E as a Rapid Communicatio
Gas chemical investigation of hafnium and zirconium complexes with hexafluoroacetylacetone using preseparated short-lived radioisotopes
Volatile metal complexes of the group 4 elements Zr and Hf with hexafluoroacetylacetonate (hfa) have been studied using short-lived radioisotopes of the metals. The new technique of physical preseparation has been employed where reaction products from heavy-ion induced fusion reactions are isolated in a physical recoil separator - the Berkeley Gas-filled Separator in our work - and made available for chemistry experiments. Formation and decomposition of M(hfa)4 (M=Zr, Hf) has been observed and the interaction strength with a fluorinated ethylene propylene (FEP) Teflon surface has been studied. From the results of isothermal chromatography experiments, an adsorption enthalpy of -ΔHa=(57±3)kJ/mol was deduced. In optimization experiments, the time for formation of the complex and its transport to a counting setup installed outside of the irradiation cave was minimized and values of roughly one minute have been reached. The half-life of 165Hf, for which conflicting values appear in the literature, was measured to be (73.9±0.8)s. Provided that samples suitable for α-spectroscopy can be prepared, the investigation of rutherfordium (Rf), the transactinide member of group 4, appears possible. In the future, based on the studies presented here, it appears possible to investigate short-lived single atoms produced with low rates ( e.g. , transactinide isotopes) in completely new chemical systems, e.g. , as metal complexes with organic ligands as used here or as organometallic compound
Illusions of general relativity in Brans-Dicke gravity
Contrary to common belief, the standard tenet of Brans-Dicke theory reducing
to general relativity when omega tends to infinity is false if the trace of the
matter energy-momentum tensor vanishes. The issue is clarified in a new
approach using conformal transformations. The otherwise unaccountable limiting
behavior of Brans-Dicke gravity is easily understood in terms of the conformal
invariance of the theory when the sources of gravity have radiation-like
properties. The rigorous computation of the asymptotic behavior of the
Brans-Dicke scalar field is straightforward in this new approach.Comment: 16 pages, LaTeX, to appear in Physical Review
- …
