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Abstract

Repeated games tend to have large sets of equilibria. We also know that in the

repeated prisoners dilemma there is a profusion of neutrally stable strategies, but no

strategy that is evolutionarily stable. This paper shows that for all of these neutrally

stable strategies there is a stepping stone path out; there is always a neutral mutant

that can enter a population and create an actual selective advantage for a second

mutant. Such stepping stone paths out of equilibrium generally exist both in the

direction of more and in the direction of less cooperation.

While the central theorems show that such paths out of equilibrium exist, they

could still be rare compared to the size of the strategy space. Simulations however

suggest that they are not too rare to be found by a reasonable mutation process,

and that typical simulation paths take the population from equilibrium to equilibrium

through a series of indirect invasions.

Instability does not mean we cannot draw qualitative conclusions though. The

very nature of the indirect invasions implies that the population will on average be

(somewhat) reciprocal and (reasonably) cooperative.
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�Everything changes, nothing remains the same�

Buddha

1 Introduction: joy in repetition

Repeating a game generally opens up a variety of possibilities for equilibrium behaviour

that the one-shot version does not possess. Repeated games therefore have been studied

extensively; see for instance Friedman (1971), Aumann & Shapley (1976), Rubinstein (1979,

1980), Fudenberg & Maskin (1986), Abreu (1988) and van Damme (1989). The standard

example under study is the prisoners dilemma, where the Nash equilibrium in the one-shot

game is not Pareto-e¢ cient and where repetition o¤ers a possible escape from ine¢ ciency.

An interesting and natural follow up question is if evolution found an escape route too,

and if it did, if it is the same escape route as the one that game theorists found. Again

the literature is quite substantial, with for instance Axelrod (1984), Boyd & Lorberbaum

(1987), Farrell & Ware (1989), Fudenberg & Maskin (1990), Binmore & Samuelson (1992,

1997), Bendor & Swistak (1995, 1997, 1998), Lorberbaum, Bohning, Shastri & Sine (2002)

and Fudenberg, Imhof & Nowak (2005). The main problem these papers face is that in

general there is no evolutionarily stable strategy in repeated games, while evolutionary

stability is the main and usually also the most promising tool from the evolutionary game

theory toolbox (see Weibull, 1995).

This paper examines how unfortunate that is. Helped by the careful distinctions between

di¤erent de�nitions of stability from Bendor & Swistak (1995) and using arguments that

are similar (but not identical) to those in Selten & Hammerstein (1984) and Farrell & Ware

(1989) we begin with a general theorem concerning the non-existence of a �nite mixture

of strategies that is evolutionarily stable in the classical de�nition (Maynard Smith &

Price, 1973, Maynard Smith, 1974). One way of dealing with such a negative result is

to try out less demanding equilibrium re�nements in order to overcome non-existence.

Although positive results have been achieved with this approach (see Bendor & Swistak

(1995, 1997, 1998) and, in slightly di¤erent settings, by Fudenberg & Maskin (1990) and

Binmore & Samuelson (1992, 1997)), we will argue that there is a fundamental instability

of all equilibria in interesting, non-trivial repeated games. We will do this by showing that

no equilibrium is robust against indirect invasions (Van Veelen, 2010). In other words, we

show that any equilibrium can be upset by an at �rst harmless mutant, which serves as

a stepping stone, or a springboard, for the invasion of a second mutant. It is shown that

for repeated games such stepping stone paths out of equilibrium generally exist, both in

the direction of more and in the direction of less cooperation - that is, if a higher resp.
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lower level of cooperation is possible and, for increases in cooperation, if the probability of

breakdown is small enough. This indicates that there is no population state that, once it

is reached, cannot be overturned by a succession of mutants.

The proof of this central result is by construction of one such path out of equilibrium

with increasing cooperation and one with decreasing cooperation. We do however also

show that the whole, unrestricted strategy space for repeated games with discounting is

very large; it is uncountably in�nite. Therefore one could wonder whether the existence of

one or two stepping stone paths out of equilibrium really is a problem one should worry

about. We do however suspect that there are many similar ways out of equilibrium, and

in order to show that these stepping stone paths are indeed important for the dynamics,

we ran simulations. We �nd that the population �nds itself in equilibrium most of the

time, with regular transitions from equilibrium to equilibrium that do indeed follow these

stepping stone paths, both with rising and with declining levels of cooperation.

There are a few conclusions to be drawn from these �ndings. The �rst is that we should

be aware that for the repeated games we tend to look at when we study cooperation with

repeated interactions, instability is just as important to focus on as stability. That does

not imply that we can not say anything about what kind of strategies we can expect to �nd

if we look at a repeated game being played in a population where strategies are subject to

mutation and selection. Quite the contrary; we will see below that even though nothing

is as stable as we would hope for, the transitions typically share some characteristics that

imply that on average - the average also being taken over time - we can expect strategies

to be somewhat nice as well as somewhat reciprocal. Exactly how nice and how reciprocal

we can expect strategies to be on average depends on the assumptions concerning mutation

probabilities. Along with the simulations we therefore developed measures for reciprocity

and cooperativeness of strategies.

As restrictions on the strategy space are just a special case of a choice for mutation

probabilities and a starting point, this embraces questions one could have about the devel-

opment of the literature too. The central theorem also implies that if a restricted strategy

space is used in the analysis of evolution of strategies in repeated games, and if we then

do �nd an ESS, then one can always extend the strategy space so that this strategy is no

longer an ESS and in fact not even weakly robust against indirect invasions. So rather than

drawing conclusions from settings with a restricted strategy space, it is more important to

think of assumptions concerning mutation probabilities as essential.

2 No ESS

The literature concerning evolutionary stability and repeated games can at �rst sight be

a bit confusing. The reason, as Bendor & Swistak (1995) show, is that di¤erent authors

have used di¤erent de�nitions of evolutionary stability. They also convincingly argue that
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Maynard Smith�s (1974) de�nition of an evolutionarily stable strategy (ESS), and perhaps

a weaker version, that Maynard Smith (1982) calls a neutrally stable strategy (NSS), are

dynamically the most interesting and meaningful ones. We will therefore adopt the more

standard de�nition of an evolutionarily stable strategy. Here S is a space of pure strategies
for the repeated game and � : S � S ! R is the payo¤ function, where �(S; T ) is the

payo¤ of a player playing strategy S against a player playing strategy T . The payo¤ of

the opponent T in this encounter is given by �(T; S), thereby assuming that the game is

symmetric.

The pure strategy version of the de�nition - [2] in Bendor & Swistak (1995) - is as

follows.

De�nition 1 (Pure ESS) A strategy S 2 S is evolutionarily stable if both
�(S; S) � �(T; S) for all T and
if �(S; S) = � (T; S) then �(S; T ) > �(T; T ) for all T 6= S

As the standard de�nition of an ESS also allows for mixed strategies, we would like to do

the same here. We therefore equate mixed strategies with probability distributions over

the pure strategy space. Section 3 and Appendix A show how S can be endowed with a
metric to make it a separable metric space. Strategies P and Q will then be a probability

measures on (S;B) with Borel �-�eld B.

De�nition 2 (Mixed ESS) A strategy P is evolutionarily stable if both

�(P; P ) � �(Q;P ) for all Q and

if �(P; P ) = � (Q;P ) then �(P;Q) > �(Q;Q) for all Q 6= P

Using De�nition 1 - the pure strategy de�nition of an ESS - Selten & Hammerstein (1984) ar-

gue that every pure strategy in every non-trivial repeated game has neutral mutants (where

a trivial game would be one in which the stage game has a singleton strategy set). The

reason is that for every strategy S playing against itself, there is always an o¤-equilibrium

path. On the o¤-equilibrium path a strategy can be changed without consequences for pay-

o¤s. This creates a mutant strategy T for which �(T; S) = � (S; S) = � (T; T ) = � (S; T )

and hence no strategy S can be ESS.

The following theorem states that �nite mixtures of strategies can also not be evolution-

arily stable. Phrased in terms of De�nition 2, we claim that no strategy P can be ESS if P

is a probability distribution that puts probability 1 on a �nite number of strategies. The

proof is a simple generalization of Selten & Hammerstein�s argument; in a �nite mixture

there is only a �nite number of equilibrium paths and hence there is always an in�nite

number of o¤-equilibrium paths left on which behaviour can be changed without a¤ecting

payo¤s. Please note that Farrell & Ware (1989) make the same claim - and prove it - but

they use a di¤erent de�nition of evolutionary stability. Furthermore we will focus on games

with discounting, but the theorem below holds for undiscounted, in�nitely repeated games

too.
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Theorem 3 In a non-trivial repeated game there is no �nite mixture of strategies that is

evolutionarily stable

Proof. Assume that P is a �nite mixture of strategies. Let P1; :::; Pn denote the

composing pure strategies of P and let p1; :::; pn with
Pn

i=1 pi = 1 be the probabilities with

which they are played in P . It is safe to assume that P is a Nash equilibrium, as being ESS

implies being a Nash equilibrium.

There can be no more than n2 paths that are followed by combinations of two pure

strategies from this mixture. There is, however, a (countably) in�nite number of possible

paths; if k represents the number of possible actions of each player in the stage game,

then there are k2 possible action pro�les per repetition, and there is an in�nite number of

repetitions. (Note that a game is non-trivial if k > 1). For every �nite mixture of strategies,

we can create a new strategy that performs exactly as well as the other strategies in the

mixture. Take one of the strategies present in the mixture, say strategy n, and mutate it

into strategy n+1 by only changing its behaviour for a history that does not occur along any

of the at most n2 paths followed by duo�s of strategies from this mixture interacting. Some

such changes could turn it into one of the other n� 1 strategies, but there is a (countably)
in�nite number of possible histories to chose from (see also Section 3) and only a �nite

number of strategies in the mixture, so there always exists one such mutant that really is a

new strategy. This new strategy does not cause any changes; when paired with any of the

n strategies both strategies n and n+ 1 follow the same paths and also the path of n with

itself is the same as n+ 1 with itself. Hence n+ 1 receives exactly the same payo¤ as the

other strategies from the mixture and we have a mutant that is not driven out. Therefore

the �nite mixture is not evolutionarily stable.

One reaction to a non-existence result like this is to be less demanding. Bendor & Swistak

(1995, 1997, 1998) did this and chose to look at strategies that satisfy a weaker condition

- [3] in their paper. This condition equals De�nition 1, but then with all inequalities

non-strict. They chose to name strategies that satisfy this relaxed condition evolutionarily

stable too, but clarity might be served with following Maynard Smith (1982) and Weibull

(1995) in terming such strategies neutrally stable (NSS). In the current paper, the de�nition

also includes mixed strategies, as opposed to Bendor & Swistak (1995, 1997, 1998)

De�nition 4 (Mixed NSS) A strategy P is neutrally stable if both

�(P; P ) � �(Q;P ) for all Q and

if �(P; P ) = � (Q;P ) then �(P;Q) � �(Q;Q)

While there is no ESS, Bendor & Swistak (1995, 1997, 1998) do �nd a profusion of (pure)

NSS�es. They also �nd that nice and retaliatory strategies have larger basins of �non-

repulsion�.1

1 In a �nite automata setting with complexity costs and lexicographic preferences Binmore & Samuelson
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3 Stepping stones in either direction

A question one could ask is how much is lost if the demands are lowered from evolutionary

to neutral stability. After all, the fact that there is no ESS does by itself not make neutral

stability a more stable concept. It therefore seems worth trying to �nd out exactly how

stable or unstable those NSS�es in the repeated prisoners dilemma are. As the only di¤erence

between the de�nitions of an ESS and an NSS is that the latter allows for invasions by

neutral mutants, the question then becomes how much harm these neutral mutants can do.

If we think for example of the strategy Tit-for-tat, then it is clear that cooperation�s

worst enemy is not AllD, but a succession of �rst AllC and then AllD. Tit-for-tat can easily

resist an invasion of AllD, but not of AllC, which is a neutral mutant of Tit-for-tat. If

AllC attains a high enough share of the population by random drift, then AllD gets a strict

advantage and can invade the population (see Fig. 1).

In Van Veelen (2010) the concept of robustness against indirect invasions is introduced.

For a strategy to be robust against indirect invasions (RAII) it must not only be a NSS,

but there must also not be a sequence of neutral mutants that opens the door for each

other, one after another, until some mutant strategy has an actual selective advantage.

The example above shows that Tit-for-tat is not RAII. Below we will see that it is not

just Tit-for-tat, but that there is in fact no strategy in a non-trivial repeated game that is

RAII; the proofs of the theorems below construct ways to leave any equilibrium in only two

steps, both in the direction of higher and in the direction of lower levels of cooperation (if

higher resp. lower levels are possible). More precisely, Theorem 5 shows that any positive

level of cooperation can be undermined by a succession of two mutations, while Theorem

6 states that if there are possible gains from (increased) cooperation, and the probability

of continuation is su¢ ciently high, then also a stepping stone route into more cooperation

exists. Together they imply that no equilibrium in interesting repeated games with low

enough probability of breakdown is RAII, and mostly there are ways out of equilibrium in

the direction of in- as well as in the direction of decreasing cooperation. Both theorems

come in a pure strategy version for expositional clarity and connection to the literature (5

and 6) and a mixed strategy version for generality (8 and 9).

We start with a few formal de�nitions. Consider a symmetric one-shot 2-player game g

characterized by a set of players I = f1; 2g, an action space A, equal for both players, and
a payo¤ function � : A�A! R2. Using a discount factor �, interpreted as a continuation
probability, this one-shot game is turned into a repeated one, which will be called � (�). A

history at time t is a list of the actions played up to and including time t � 1, where an
empty pair of brackets is used to denote the history �no history�. If at;i is the action played

by player i at time t, then these histories are:

(1992, 1997) relax the requirement of an ESS to a MESS (see also Swinkels & Samuelson (2003) for a

perfectly accurate and meaningful characterization of the di¤erent de�nitions). Their results are also in

favour of e¢ ciency.
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h1 = ()

ht = ((a1;1; a1;2) ; :::; (at�1;1; at�1;2)) ; t = 2; 3; :::

Sometimes we will also write (ht; (at;1; at;2)) for a history ht+1. The set of possible histories

at time t is:

H1 = fh1g
Ht =

Qt�1
i=1 (A�A) t = 2; 3; :::

and the set of all possible histories is:

H =
1S
t=1
Ht.

It will furthermore be useful to have a way of writing down a history with the roles of the

players reversed. Given a history ht as they are de�ned above, its mirror image h t is found

by simply renumbering the players:

h 1 = ()

h t = ((a1;2; a1;1) ; :::; (at�1;2; at�1;1)) ; t = 2; 3; :::

The reason why histories with roles reversed are needed, is that we assume that both players

label themselves as player 1 and the other as player 2 and therefore face mirrored histories

as they go along.

A strategy is a function that maps histories to the action space; S : H ! A. For two

strategies, say S and T , the course of actions is determined by recursion; all actions at all

stages are determined by the initiation

hS;T1 = ()

and the recursion step

aS;Tt =
�
S
�
hS;Tt

�
; T
�
hS;T t

��
hS;Tt+1 =

�
ht; a

S;T
t

�
; t = 1; 2; :::

The discounted normalised payo¤s to (a player that uses) strategy S against strategy T is

given by:

�(S; T ) = (1� �)
1P
t=1
�t�1�1

�
aS;Tt

�
With these de�nitions, we can prove the �rst theorem. Note that strategies here are pure,

and that we write that S is an equilibrium strategy, which is short for (S; S) being a

symmetric equilibrium of the game � (�).
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Theorem 5 Let S be a strategy in the game � (�) and let there be a time � at which aS;S� is

not an equilibrium of the stage game. Then S is not weakly robust against indirect invasions.

Proof. Assume that S is an equilibrium (if it is not, it it trivially not robust against

indirect invasions). Let T be the strategy that equals S for all histories, except for those

that are elements of the set bH =
�
ht j t > �; a�;2 = argmaxa2A �2

�
S
�
hS;S�

�
; a
�	
. These

histories only occur o¤ the equilibrium path, since it is assumed that players playing S

against each other do not play an equilibrium of the stage game at time � . For those histories

ht 2 bH we take T (ht) = S
�
hS;St

�
. Obviously, the paths of T against S, T against T , S

against S and S against T are all the same; hT;St = hT;Tt = hS;St = hS;Tt 8 t. Consequently
the corresponding payo¤s are also equal; �(T; S) = � (S; S) = � (T; T ) = � (S; T ).

Now let U be the strategy that equals S, except for hS;S� , for which we take U
�
hS;S�

�
=

argmaxa2A �1
�
a; S

�
hS;S�

��
and except for histories that are elements of the set eH =�

ht j t > �; a�;1 = argmaxa2A �1
�
a; S

�
hS;S�

��	
, for which we take U (ht) = S

�
hS;St

�
; ht 2eH.

It is obvious that �(U; S) � �(S; S), for S is an equilibrium, and it is also clear that
�(U; T ) > �(T; T ) = � (S; T ), because U improves itself at time � without being punished

by T . As �(U; T ) > �(T; T ), while �(S; S) = � (T; S) and �(S; T ) = � (T; T ), S is not

weakly robust against indirect invasions.

Note that �(U; T ) > �(T; T ) = � (S; S) � �(U; S), and therefore that T 6= S. In other
words, if T = S, then U does strictly better against S than S itself and that contradicts S

being an equilibrium.

What this theorem indicates is that as soon as there are equilibrium actions that must

be upheld by the threat of punishment, then there can be mutants that do not punish,

and subsequently there can be other mutants that takes advantage of the �rst mutant

not punishing. One thing worth noting is that the proof constructs only one way out of

equilibrium. While this particular stepping stone path changes behaviour for histories that

are elements of rather moderate sets bH and eH, other ways out of equilibrium may come

with changes on larger, and maybe even more natural sets of histories, as for instance the

example in Figure 1 shows. But what the theorem shows is that if there is cooperation in

equilibrium, at least the existence of an indirect way out is guaranteed.
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Figure 1. An example of an indirect invasion with decreasing

cooperation; TFT, AllC and AllD. The dynamics are

computed for � = 3
4 .

While the reference point in Theorem 5 is the equilibrium of the one-shot game, we will now

focus on departures from what in non-trivial games is the other extreme: the maximally

feasible symmetric payo¤s. Therefore we de�ne �max = maxa2A �1 (a; a) and amax =

argmaxa2A �1 (a; a). Note that amax is an action, while aS;S� =
�
S
�
hS;S�

�
; S
�
hS;S�

��
is an

action pro�le. The following theorem states that if there is a point in the course of play

of an equilibrium strategy at which unilaterally initiating cooperation could be o¤set by

future gains from (increased) cooperation, then the strategy is not robust against indirect

invasions.

Theorem 6 Let S be a strategy in the game � (�) and let there be a time � , for which the

following holds:

1. �1
�
aS;S�

�
� �1

�
amax; S

�
hS;S�

��
<

1P
t=�+1

�t��
�
�max � �1

�
aS;St

��
.

2. amax 6= S
�
hS;S�

�
Then S is not weakly robust against indirect invasions.

Proof. Assume that S is an equilibrium (if it is not, it it trivially not robust against

indirect invasions). Let T be the strategy that equals S for all histories, except for those

that are elements of the set bH = fht j t > �; au;2 = amax; u � �g. These histories only
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occur o¤ the equilibrium path, as it is assumed that amax 6= S
�
hS;S�

�
. For those histories

ht 2 bH we take T (ht) = amax. Obviously, the paths of T against S, T against T , S against

S and S against T are all the same; hT;St = hT;Tt = hS;St = hS;Tt 8 t. Consequently the
corresponding payo¤s are also equal; �(T; S) = � (S; S) = � (T; T ) = � (S; T ).

Now let U be the strategy that equals S, except for the history hS;S� , for which we

choose U
�
hS;S�

�
= amax and except for the histories that are elements of the set eH =

fht j t > �; a�;1 = amax and au;2 = amax; u > �g, for which we take U (ht) = amax; ht 2 eH.
It is obvious that �(U; S) � �(S; S), for S is an equilibrium, and it is also clear that

�(U; T ) > �(T; T ) = � (S; T ), because that follows directly from the �rst requirement of

the theorem. As �(U; T ) > �(T; T ), while �(S; S) = � (T; S) and �(S; T ) = � (T; T ), S

is not weakly robust against indirect invasions.

As in the proof of Theorem 5, S being an equilibrium implies that T 6= S.

The requirements in this theorem are slightly less simple to check for than those in Theorem

5, but when translated to prisoners dilemma�s, it turns out to imply something that is

relatively easy to handle. Before doing so, however, it is good to realize that discounted,

normalised payo¤s that belong to a combination of two strategies can vary with � and that

they do so in di¤erent ways. If we look at symmetric equilibria, then it might be that two

di¤erent strategies that, when played against themselves, both have the same discounted,

normalised payo¤ for a given �, while a higher � increases them for one and decreases them

for the other strategy.

The next theorem states that for repeated prisoners dilemma�s, all symmetric equilibria

with payo¤s less than �1 (C;C) � (1� �) [�1 (C;C)� �1 (C;D)] are not robust against
indirect invasions. If we take more or less standard values, that is �1 (D;C) = 4; �1 (C;C) =

3; �1 (D;D) = 1; �1 (C;D) = 0, then this amounts to 3�; all strategies S with with payo¤s

�(S; S) less then 3� are indirectly invadable. There may be many other equilibria that are

also not robust against indirect invasions, but Theorem 7 shows that at least all strategies

with relatively low payo¤s satisfy the criteria for Theorem 6. It also means that the closer

� gets to 1, the more strategies are shown to be vulnerable to indirect invasions with

increasing cooperation, and for any strategy S with payo¤ �(S; S) < �1 (C;C) there is

a � 2 (0; 1) such that S indirectly invadable for all � 2
�
�; 1
�
. Together with Theorem 5

that implies that for su¢ ciently high � no symmetric equilibrium strategy is robust against

indirect invasions.

Theorem 7 In a repeated prisoners dilemma, all strategies S with �(S; S) < �1 (C;C)�
(1� �) [�1 (C;C)� �1 (C;D)] are not weakly robust against indirect invasions.

Proof. First realize that S is �1 (C;C)��(S; S) short from full, symmetric e¢ ciency.

Then choose as time � in Theorem 6 the �rst period that S plays defect. The second

requirement of the same theorem is then automatically ful�lled.
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The following can then be derived

�(S; S) < �1 (C;C)� (1� �) (�1 (C;C)� �1 (C;D)))

�(S; S) < �1 (C;C)� (1� �) �� (�1 (C;C)� �1 (C;D)),

�1 (D;D)� �1 (C;D) < 1
(1��)�� [�1 (C;C)��(S; S)]� [�1 (C;C)� �1 (D;D)],

�1
�
aS;S�

�
� �1

�
amax; S

�
hS;S��1

��
<
1P
t=�

�t��
�
�max � �1

�
aS;St

��
�
�
�max � �1

�
aS;S�

��
This satis�es the �rst requirement of Theorem 6.

Again, the proof of Theorem 6 only gives one stepping stone route out of equilibrium, but

there may be lots of ways in which successive mutants can throw an equilibrium o¤ balance

with an increasing level of cooperation.

Figure 2. An example of an indirect invasion with increasing

cooperation; AllD, Suspicious TitForTat (STFT, also known

as TatForTit) and Cooperate-TitForTat (CTFT, cooperates

on the �rst two moves and then imitates the opponent). The

dynamics are computed for � = 3
4 .
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3.1 Mixed strategies

In evolutionary as well as in standard game theory, equilibrium concepts usually allow for

mixed strategies. While the standard setting of symmetric 2-person bi-matrix games (see

Weibull, 1995) naturally comes with de�nitions in terms of mixed strategies, the literature

on repeated games is much more focussed on pure equilibria (with exceptions such as

for instance Binmore & Samuelson, 1992, and Samuelson & Swinkels, 2003). It seems

however no less natural to include mixed strategies here too, especially since the paths out

of equilibrium at least at �rst lead away from pure strategies (or homogeneous populations)

and into mixtures of strategies. While Theorem 3 shows that there is also no mixed ESS,

Theorems 5 and 6 do not yet exclude the possibility that there is a mixture of strategies

that is RAII. In this subsection we therefore give the equivalents of those theorems for �nite

mixtures. Here we will directly focus on repeated prisoners dilemma�s rather than repeated

games in general. This will keep notation simpler, it hopefully helps the intuition and still

captures the essentials. Also, �(D;D) will be used to denote (1� �)
P1

t=0 �
t�1�1 (D;D) =

�1 (D;D), which is the normalised discounted payo¤ of AllD against AllD.

Theorem 8

Let P be a �nite mixture of strategies in � (�).

If �(P; P ) > �(D;D) then P is not weakly robust against indirect invasions.

Proof. See Appendix B.1

As with the pure strategy version, the proof in the appendix just constructs one particular

way out of equilibrium, while there may be many other stepping stone paths, some of which

can be considered to be more likely than others. But the theorem shows that indirect

invasions are always possible for equilibria with cooperation.

In order to formulate the mixed strategy counterpart for increasing cooperation, it will

be helpful to de�ne the following. Let P1; :::; Pn 2 S be the composing pure strategies of P
and let p1; :::; pn, with

Pn
i=1 pi = 1, be the probabilities with which they are played in P .

For any defection that occurs along a path of interaction between any two strategies Pi and

Pj from P we can discount the possible gains in the future and compare it to the current

period loss of switching from D to C as an initiation of cooperation. Therefore we �rst

de�ne Ei (j)t =
n
Pl j hPi;Plt = h

Pi;Pj
t

o
, which makes it the set of strategies against which

the history of Pi at time t is the same as against Pj . Since we assume that P is a �nite

mixture, we know that limt!1Ei (j)t = Ei (j), where Ei (j) is de�ned (see also the proof

of Theorem 8) as Ei (j) =
n
Pl j aPi;Plt = a

Pi;Pj
t 8 t

o
. For any combination of strategies

(Pi; Pj) and any time t we can compute �ij;t as follows:

12



�ij;t =

8>>>>>>>>><>>>>>>>>>:

� such thatP
Pl2Ei(j)t

pl

�
�1

�
aPi;Plt

�
� �1

�
C; aPi;Plt;2

��
=

P
Pl2Ei(j)t

pl
1P

u=t+1
�u�t

�
�1 (C;C)� �1

�
aPi;Plu

��
if aPi;Pjt;1 = D and the equation has a solution � 2 (0; 1)

1 otherwise

This de�nition greatly simpli�es the formulation of the next theorem. Note that the condi-

tion is very modest; the continuation probability � only has to be larger than the smallest

�ij;t.

Theorem 9

Let P be a �nite mixture of strategies in � (�).

If mini;j;t �ij;t < � < 1 then P is not weakly robust against indirect invasions.

Proof. See Appendix B.2

4 Indirect invasions in the simulations.

In Section 3 it was already mentioned that the proofs only provide two stepping stones paths

out of equilibrium; one with increasing and one with decreasing cooperation. This is enough

to show that an equilibrium is not RAII. Still, since there is an uncountably in�nite number

of strategies (see Appendix A), one could say that the existence of only one or two stepping

stone paths out would not necessarily make an equilibrium very unstable. We do however

know that the paths constructed in the proofs are not the only paths out and we conjecture

that in fact there will be very many quite similar ways out of equilibrium. Unfortunately,

with an uncountably in�nite strategy space, there is no way to determine how many paths

out would be enough to be able to say with some con�dence that a mutation process will

actually �nd them. More precisely, even if the number of paths out of equilibrium would

also be uncountably in�nite for every equilibrium, a speci�c mutation process could still

imply that when the population is at an equilibrium, the mutations needed for an indirect

invasion occur with probability 0, while on the other hand, even when there would be only

one path out of each equilibrium, a speci�c mutation process could imply that it occurs

with positive probability. What matters therefore is the combination of a mutation process

and the possible indirect invasions. In order to be able to say if these indirect invasions

indeed drive the evolutionary dynamics in relevant, interesting settings, we will therefore

have to combine the game with a priori reasonable mutation processes. For our simulation

approach we simply started out with what we think is the most natural choice for a set of

mutation processes, if we do not want to exclude any part of the strategy space.
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4.1 The simulations

The basics of the simulation are quite simple. There are N individuals and every generation

they are randomly matched in pairs to play the repeated game. Because the game has a

probability of breakdown that is smaller than 1, the number of repetitions is a random vari-

able. This, and the randomness of the matching, creates noise in the payo¤s of individuals.

These payo¤s are used in the update step. In the simulations reported here we use the

Wright-Fisher process. In the Wright-Fisher process all individuals in the new generation

are drawn one by one, and independently, from a distribution where the probability of be-

ing the o¤spring of individual j from the old generation is proportional to the payo¤ of j.

(The program also has the option to run it as a Moran process, but that is computationally

very ine¢ cient. The online material at www.creedexperiment/evolution contains a more

detailed description). After the new generation has been drawn, all individuals mutate with

a small probability. This completes the cycle for one generation. The cycle is repeated a

large number of times.

Strategies are programmed explicitly as �nite automata.2 A strategy is a list of states,

and for every state it prescribes what the automaton plays when in that state, to which

state it goes if the opponent plays cooperate, and to which state it goes if the opponent

plays defect. There are four types of mutations we allow for: mutations that add a state,

mutations that delete a state, mutations that change the output when in a state, and

mutations that change for a given state to which state this player goes given an action of

the opponent. We chose mutation schemes where all of those four types of mutations are

possible. If that is the case, then there are two things that are worth realizing. The �rst

is that every �nite automaton can be reached by a �nite sequence of mutations from any

other automaton. The other is that if we choose a very natural distance, then the set of all

�nite automata is dense in the set of all strategies (see Appendix A). Together, this implies

that we can get arbitrarily close to any strategy through a �nite sequence of mutations.

This we think is a very attractive property of a mutation scheme.

These ingredients are all there is to the simulation program itself. Still this simple

setup gives us a dynamic process with a few quite interesting features. As we will see

below, this evolutionary process always �nds a stepping stone path out of equilibrium in

reasonable time. In fact, with increasing population size, indirect invasions come to domi-

nate everything else as a driver of the dynamic process. That however does not mean that

the notion of an equilibrium is not important; after leaving an equilibrium, the dynamics

2The program also has the options to represent strategies with regular expressions, or to let Turing

machines evolve. The set of regular expressions is equivalent to the set of �nite automata, but because

they are represented di¤erently, the likelihoods of mutations also are di¤erent; a mutation that is a single

step in one representation requires a series of steps in the other and vice versa. This is discussed in more

detail at the website that also has the simulation program on it. The set of Turing machines is a richer set

of strategies that embraces the set of �nite automata.
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tend to take the population to a new equilibrium relatively fast. The population settles in

the new equilibrium for a while, until another indirect invasion occurs. Under a reasonable

set of mutation schemes, populations of a reasonable size therefore appear to walk from

equilibrium to equilibrium through indirect invasions (see also Figure 3).

One feature that we �nd particularly appealing in these simulations, is that they nicely

walk through a large strategy space in a way that shares quite some features with how we

think of actual evolutionary processes. While there is typically only a few strategies present

at any point in time, the process nonetheless takes the populations through many di¤erent

parts of a vast strategy space. This means that locally we can very well describe what

happens in the simulations with dynamics on simplices of relatively low dimensions. New

mutations however allow the process as a whole to go from one simplex of low dimension to

another, typically through shared facets. What is also realistic, is that mutations have to

work with what is there; the probability of a certain mutant entering the population depends

on how similar the mutant is to what is there at the moment in the current population.

This matches with how we think many evolutionary processes take populations through

what typically is a vast space of possibilities. Even though mutations are local - in the

sense that they only alter existing strategies - the dynamics of the process as a whole can

be quite rich, with a population that, although mostly in or close to equilibrium, still makes

its way through a rich strategy space.

Figure 3. Part of a typical run. The population size is 128, the continuation probability is 0.75. Blue letters

indicate where relevant neutral mutants occur, green letters indicate advantageous mutants entering. It

moves from a fully defective equilibrium to a fully cooperative one, back to a fully defective one, and then

to an equilibrium with partial cooperation. The actual sequence of strategies is given in Appendix D.

4.2 Capturing transitions

The aim of the simulations is to �nd out if the possibility of indirect invasions indeed makes

a substantial di¤erence for evolutionary dynamics in repeated games. Before being able to

say if an equilibrium was left through an indirect invasion, it is important to �rst be able

to say if it was left at all. While transitions are made possible by a mutation process that
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constantly produces new strategies, that very same production of new strategies also creates

noise in the population. This implies that if we think for instance of a pure equilibrium,

we should not only classify a population as being at that equilibrium if the population

consists of that one strategy only and nothing else. Given the frequent introduction of

mutants, most of which enter only to be eliminated from the population before ever having

attained a considerable share, we should also classify nearby population states as being at

that equilibrium, and create a bandwidth which allows us to disregard the noise.

If the population at time t consists of strategy A only, and at time t+100 of strategy B

only, then it is fair to say that at least one transition has occurred. If on the other hand the

population at time t, and at time t+ 100, and at all times in between, consists of between

90 and 100% strategy A and a remainder that is composed of an ever changing set of other

strategies, then it seems reasonable to assume that a transition has not occurred, and that

the little di¤erences only re�ect the regular in�ux and extinction of new mutations.

Figure 4. With only three strategies present, this depicts the

classi�cation of population states with a threshold of 90%. A

population that consists, for example, of 65% strategy A, 30%

strategy B and 5% strategy C is classi�ed as a 2 dimensional

mixture of A (most popular) and B (second most popular).

With four strategies, we get a three dimensional simplex with

a smaller simplex-shaped area in the middle that represents

the �dark zone�.

We therefore begin the classi�cation of a population state by ranking the composing strate-
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gies from frequent to infrequent. Then we look at the minimum number of strategies that

is needed to capture at least a �xed percentage of the population (below we choose 90%

for the threshold). A population state is then characterized by its dimensionality (pure, 2

strategies, 3 strategies, more than 3 strategies) and the actual most popular strategy, resp.

the 2 most popular and the 3 most popular strategies as they are ranked (see Fig. 4). The

classi�cation thereby never ignores more than 10% of the population. With the mutation

rates and population sizes we chose in the simulations below, a population where the three

most popular strategies made up less than 90% of the population was a rare exception.

This classi�cation allows us, at least to some extent, to pick up three types of (possible)

equilibria ; pure ones, mixed ones with two strategies, and mixed ones with three strategies.

If the population is at a pure equilibrium, we expect that it �nds itself in a corner pocket

(see Fig. 4), and that most of the mutants do not take the population outside this corner

pocket. If a population is a mixed equilibrium with two strategies, it should �nd itself

somewhere in between two edges, on the facet of the simplex. The construction of the

pocket excludes that the areas that are meant to capture the mixed equilibria consist of the

whole facet, because a small part of it is already contained in the pocket. But, again with a

threshold of 90%, if the population �nds itself in a mixed equilibrium where both strategies

account for more than 10% of the equilibrium frequencies - and hence the equilibrium is not

contained in a corner pocket - we expect that most mutations will not take the population

outside the area it is in. On the facet itself we expect that on average the population will

also be pushed in the direction of its equilibrium composition.

With this way to classify population states, we can follow the population as it travels

from region to region. At any such transition, we can check if this transition can be

associated with a neutral mutant entering or exiting the population, or with advantageous

or disadvantageous mutants entering or exiting the population. This gives us the possibility

to characterize a sequence of transitions as an indirect invasion or an invasion of a di¤erent

kind. If strategy A is a pure equilibrium strategy, and B is a neutral mutant of A, and

C has a strict advantage against B, then - with obvious abbreviations - going from the

region A to AB to BA to B to BC will be classi�ed as an indirect invasion. If A is a

pure equilibrium, and D is a mutant with a selective disadvantage, then going from region

A to region AD is classi�ed as a di¤erent invasion. (On www.creedexperiment/evolution

we go into more detail on possible boundary crossings and possible sequences of boundary

crossings).

This immediately points out the trade-o¤ that we face for the choice of a threshold. If

we choose a threshold that is larger than N�1
N , where N is the population size, then any

mutant entering the population will take it outside the corner pocket. All mutants will

therefore be recorded as transitions, and all disadvantageous mutants will be recorded as

�di¤erent invasions�, even though they might be extinct the next generation already. This

high threshold thereby leaves no room at all to observe what we are interested in, which is
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the di¤erence in how selection acts on di¤erent (sequences of) mutants. On the other hand,

if we choose the threshold at 50%, then we leave no room to observe dynamics near mixed

equilibria at all, as described above. So a lower threshold means more room to observe

selection at work, but also more mixed equilibria that will go unnoticed, because they end

up in corner pockets.

4.3 Capturing indirect invasions

Theorems 5 and 6 concern stepping stone paths out of pure equilibria. Since the theorems

suggest that equilibria can be left through neutral mutants that open doors for other,

advantageous mutants, it makes sense to �rst acknowledge that there will also be neutral

mutants that themselves still are equilibria, and that therefore do not yet open such doors.

As the starting point of a path out of a pure equilibrium, we therefore only choose those

equilibria that were not themselves reached by a neutral invasion. Thereby we allow for

neutral mutants that themselves are still equilibria just to be a part of the stepping stone

path. As expected, all such sequences of neutral mutants turn out to have the same self-play,

which, for as long as they are equilibria, is the equilibrium path. This implies that if we �nd

a sequence of neutral mutants that themselves are equilibria, followed, �rst, by a neutral

invasion to a state that is not an equilibrium, which in turn is followed by an advantageous

mutant, then it is reasonable to count the whole sequence as one single indirect invasion. It

is for sure a two-step indirect invasion when counted from the last equilibrium, and one can

very well also see it as an indirect invasion into the �rst and into all equilibria in between,

but counting it as just one single indirect invasion is more than reasonable.

If a pure equilibrium is left through a sequence of one or more boundary crossings that

can be characterized as neutral, followed by one boundary crossing that can be characterized

as the entry of an advantageous mutant, then it is quali�ed as an indirect invasion. All

other sequences out of equilibrium (zero or more neutral mutants followed by a boundary

crossing that can be characterized as the entry of disadvantageous mutant) are quali�ed as

�other invasions�. Notice that theorems 5 and 6 concern leaving equilibria, and not what

happens after an equilibrium is left. What we are after here is therefore �rst and foremost

to capture paths away from the equilibrium that occur in the simulations.

Finding those starting points (pure equilibria that are themselves not reached by a

neutral mutant) is facilitated by an automated procedure called the best responder. This

procedure can, for a single �nite automaton, �nd the best response to it, and thereby

determine if it is a best response to itself and hence a pure equilibrium (see Appendix C).

We ran simulations for di¤erent population sizes, and �rst looked at how pure equilibria

are left. The data indicate that for pure equilibria the share of indirect invasions goes to 1

with an increase in population size (see Fig. 5).

18



Figure 5. Transitions out of pure equilibria. As the population increases, the share of

transitions that are indirect invasions goes to one.

For combinations of two or more �nite automata it is harder to get such clean data. Con-

structing a best responder to a mixture of strategies is far more complicated than construct-

ing one for pure strategies and thereby well beyond the scope of this paper. This implies

that we do not have an automated procedure that determines if mixed states are equilibria.

The best we can do without having this procedure at our disposal is to disregard as many

obvious mixed disequilibrium states as possible, and see how the remainder of the mixed

states - again, not themselves reached by a neutral invasion - is left. Here we of course

again set apart those that are left by indirect invasions, but in the remainder there is an

extra category. Since we expect that a mixed equilibrium might also be left relatively easily

by one of the composing strategies going extinct, we also count separately how many are

left by the population moving into a region of a lower dimension. We �nd that for every

population size, the vast majority of mixed states consisting of 2 strategies are left by one

of the two �xating. (The data and a more elaborate discussion are in the online material).

The simulations do not render enough data for states consisting of 3 pure strategies, as the

population spends most of its time in states with low dimensions.

To support the claim that the dynamics take a population from equilibrium to equi-

librium through indirect invasions, it is worthwhile to look at what happens after one

equilibrium is left, and how long it takes to get to another. Although not the main aim
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of the simulations - which focus on leaving equilibria, and not on arriving at others - it is

interesting to note that the percentage of time spent in equilibrium also increases with the

population size. With increasing population size, it gets a bit harder to pinpoint how much

time is spent in equilibrium; more time is spent outside of the corner pockets, for which

we do not have a mixed state best responder procedure. We can however give upper and

lower bounds, as Figure 6 does. Note that with small population sizes (the left side of Fig.

6) and �xed per individual mutation rates, only few mutations occur. This implies that

by chance a population can get stuck in a disequilibrium state for a very long time, just

because the right mutation takes forever to appear.

Figure 6. Time spent in equilibrium as a function of population size.

Together, these �ndings strongly suggest that populations playing repeated prisoners dilem-

mas do indeed walk from equilibrium to equilibrium through indirect invasions, already for

populations that are not even that large. The leaving of pure equilibria is shown to become

dominated completely by indirect invasions, while mixed states tend to be left by �xation

events of the composing pure strategies more than through indirect invasions.

4.4 Comparison between equilibria that are not RAII with equi-

libria that are

Our claim is that it matters that equilibria in the repeated prisoners dilemma, although

neutrally stable (NSS), are not robust against indirect invasions (RAII). If we rank a few well
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known di¤erent equilibrium concepts in evolutionary game theory according to decreasing

levels of stability, then we get the following inclusions.

�ESS � �NSS � �NE

A Nash equilibrium that is not NSS is easily left; not being NSS means that there is a

mutant for which the replicator dynamics pushes the population away from the equilibrium

if this mutant enters the population. An ESS on the other hand is very stable; there is a

neighbourhood such that the replicator dynamics take the population back to the ESS from

any point in that neighbourhood. Still, stability remains a relative thing; although it is much

harder to leave an ESS - it takes orders of magnitude more time in any reasonable stochastic

dynamic process - than it is to leave a Nash equilibrium that is not NSS, it is not impossible.

In fact, some of the most interesting papers in the literature on evolutionary game theory

compare the stability of di¤erent ESS�es in one and the same game by comparing how

many (simultaneous) mutations it takes to get from one ESS to the other (see for instance

Kandori, Mailath & Rob, 1993, Kandori & Rob, 1995, Foster and Young, 1990, Young,

1993, 1998, Ellison, 2000). It may take very long, but the idea is that it could still be

that one equilibrium is left more easily than the other. This then gives rise to a further

re�nement (stochastic stability in Young, 1993, or long run equilibria in Kandori, Mailath

& Rob, 1993).

Our claim is that in order to properly compare stability, the categorization with ESS,

NSS and NE is in some cases a bit too rough. Some NSS�es are, and some are not RAII.

Those that are RAII, we suggest, are much more stable than those that are not. Since being

RAII implies that this strategy is contained in a setwise generalisation of an ESS (see van

Veelen, 2010) one could even say that in the sequence of inclusions below, the bigger gap

is actually between RAII and NSS, and not between ESS and RAII.

�ESS � �RAII � �NSS � �NE

In order to indicate that it does indeed matter that NSS�es in a repeated prisoners dilemma

are not RAII, we will compare it to a game that is rather similar in a lot of respects, but

that has equilibria that are in fact RAII. If we replace the prisoners dilemma as a stage

game with a coordination game, then we preserve everything, including the richness of the

strategy space. The only di¤erence is that now we do get equilibria that are RAII (but

not ESS). That means that what sets these repeated games apart is the existence resp.

nonexistence of the possibility for indirect invasions.

2 0

0 2
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Below we compare the number of transitions in simulations for the repeated prisoners

dilemma to the number of transitions in the repeated coordination game. What counts as

a transition is if the population goes to a state where the self-play is di¤erent.

Figure 7. The number of transitions leaving pure equilibria in a repeated prisoners

dilemma and in a repeated coordination game for di¤erent population sizes. Note that in

the repeated coordination game, all RAII equilibria are pure, and all mixed equilibria are

not NSS.

The number of transitions away from pure equilibria in the repeated prisoners dilemma is

decreasing only very slightly. This �ts what we expect; with example 6 in Van Veelen (2010)

in mind, we expect that it is the �xation probability of neutral mutants that determines

the speed at which indirect invasions occur in large populations. The �xation probability of

a neutral mutant is 1
N , where N is the population size, but since the mutation probability

per individual is constant, the number of neutral mutants entering is proportional to N .

If we can assume that every neutral mutant has either �xated or gone extinct before the

other neutral mutant appears, then the expected number of transitions by neutral mutants

should be constant, as the decrease in �xation probability is compensated by an increase

in numbers of neutral mutants entering. But with an increase in population size, �xation

times also increase, and the larger the population, the more neutral mutants enter in a

population that has not yet �xated. This interference implies that we will be seeing slightly
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less �xation events for larger populations.

The number of transitions in the repeated coordination game on the other hand de-

creases much more drastically. The data suggest that the number of transitions out of

pure equilibria in the repeated coordination game divided by the number of transitions in

the repeated prisoners dilemma goes to 0 rather rapidly. One can therefore conclude that

evolution in a population playing the repeated prisoners dilemma remains in�nitely more

mobile than evolution in a population playing a repeated coordination game, and that the

possibility of indirect invasions makes all the di¤erence.

4.5 Average reciprocity and niceness

The appendix also contains ways to measure reciprocity and cooperativeness for strategies.

Not surprisingly, we �nd that strategies are on average somewhat reciprocal and moderately

cooperative. This is rather natural; all equilibrium strategies are between uncooperative

and fully cooperative and between not reciprocal and very reciprocal. A process that takes

the population from equilibrium to equilibrium, with in- as well as decreasing levels of

cooperation therefore must lead to an average that is somewhat reciprocal and moderately

cooperative. Paths from one equilibrium to the other also typically �rst exhibit an increase

(decrease) of the level of reciprocity, which is followed by an increase (decrease) of the level

of cooperation. Note that, although the measure for cooperativeness can by construction

not fall below 0 or be larger than 1, the measure for reciprocity can be negative.

There are however also equilibria where cooperation is preceded by a �negative hand-

shake�. If we look at the following automaton, then it constitutes an equilibrium where

cooperation that comes too soon is actually punished. We do sometimes see equilibria like

this arising in the population (see also Appendix D, that contains the sequence of strate-

gies that comes with the part of a run that is depicted in Fig. 3). Reciprocity here is not

unambiguously positive; this strategy rewards cooperation when in state 4 and 5, but it

does also punish cooperation when in state 1, 2 or 3 (see again the online tutorial for more

detailed description of measures of reciprocity).
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Figure 8. D3TFT . With this strategy, three D�s is the code for cooperation to start.

Once past the initial uncooperative fase, it plays just like ordinary TFT , but any

deviation from the initial uncooperative fase implies eternal defection.

5 Conclusion and discussion

Both the theorems and the simulations in this paper indicate that there is a fundamental

instability in repeated games, provided that the stage game is characterized by a con�ict

between individual and collective interests. The prime example is of course the repeated

prisoners dilemma. Theorems 8 and 9 show that with su¢ ciently large continuation prob-

ability �, there is no strategy in the repeated prisoners dilemma that is robust against

indirect invasions. In other words: every equilibrium can be upset, either by a mutant, if

the strategy is not an NSS, or by a succession of mutants if the strategy is an NSS. The

simulations show that under very reasonable mutation schemes these stepping stone paths

out of equilibrium not only exist, but evolution also actually �nds them.

The richness of the strategy space therefore excludes that there is an equilibrium re�ne-

ment, or a static stability concept, that by only looking at the game itself can predict what

happens in a population with random matching, mutation and selection. One important

thing that this tells us, is that what we can expect to evolve will essentially depend - besides

on � - on the structure of the mutation probabilities, or more precisely, on which mutations

are relatively likely. The proofs of the results show that there are stepping stone paths out

of equilibrium, both with in- and with decreasing levels of cooperation. Whether we can

expect cooperation to in- or decrease therefore depends on how many more of these paths

there are, and, more importantly, on the probabilities with which the di¤erent mutations

occur. Also the starting point might matter, although it seems that a natural starting point

for evolution is the strategy to always defect.
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If we allow ourselves to restrict the strategy space, then that o¤ers a possibility to

get stability results. It is however important too see that restricting the strategy space

to, say, a subset T of S, is in fact a special case of a combination of a starting point
(somewhere within T ) and an assumption concerning mutation probabilities (they are zero
for all mutations from elements of T to elements of SnT ). This therefore more or less falls
within the message that starting point and mutation probabilities are decisive. The results

here however also imply that any stability result that is achieved by restricting the strategy

space is not robust to relaxations of the restriction on the strategy space. If the strategies

needed for the indirect invasions are apparently barred by exclusion from the strategy space,

they nonetheless still exist, and adding them to the strategy space (i.e. allowing mutations

to them) would render the strategy that was stable within the restricted strategy set T
instable.

Simulations show that with a reasonable mutation process, a population that is not too

small does indeed walk from equilibrium to equilibrium through indirect invasions. Since

the in�nite population model is meant to produce results that help us understand what

happens in large, but still �nite populations, the simulations thereby also emphasize the

importance of neutral mutants and the need to have a concept of robustness against indirect

invasions in our theory for in�nite populations.

Playing with the simulations is also seriously fun, and can be done at www.creedexperiment.nl/evolution.
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A A metric for S

Since a strategy S : H ! A is a function that maps the set of histories H on the action

space A, the set of strategies S is at least as large as the power set of H if the number of

actions in A is larger than 1. Since H is countably in�nite, we know from Cantor�s Theorem

that the power set of H is uncountably in�nite.

Let f : H � S � S !f0; 1g be de�ned by

f (ht; S; T ) =

(
0 if S (ht) = T (ht)

1 if S (ht) 6= T (ht)

We assume that the action space A is �nite, and that it has k elements, a1; :::; ak. The

number of possible histories in Ht therefore is k2t�2.

De�ne the distance between S and T , both S; T 2 S, as follows:

d (S; T ) =
1P
t=1
�t

P
ht2Ht

jf (ht; S; T )j

with � = �
k2 and � 2 (0; 1).

If we take for St � S the set of strategies in S that all play a1 for all histories hu with
u > t, then it is a �nite set; it has k(

Pt
v=1 k

2t�2) = k

�
k2t�1
k2�1

�
elements. The set

1S
t=1
St is

therefore countable, but it is easy to see that it is dense in S.

B Proofs of theorems

B.1

Proof of Theorem 8 Assume that P is an equilibrium (if it is not, it it trivially not

robust against indirect invasions). Let P1; :::; Pn 2 S be the composing pure strategies of
P and let p1; :::; pn;

Pn
i=1 pi = 1, be the probabilities with which they are played in P . If

�(P; P ) > �(D;D), then obviously not all combinations of Pi and Pj , with 1 � i; j � n,
can always play D when they interact. So there must be at least one i and one j, with

1 � i; j � n, and a time � for which aPi;Pj� 6= (D;D). First it is clear that there cannot

only be a �nite number of times that C is played in the mixture. Suppose that were true,

and there is a time � and an i and a j, with 1 � i; j � n, for which aPi;Pj� 6= (D;D) and
a
Pi;Pj
t = (D;D) for all i and j and t > � , then the mixture is not an equilibrium; without

restricting generality we can assume that Pi
�
h
Pi;Pj
�

�
= C and then a strategy that equals

Pi for all histories at times t < � and plays D for all histories at times t � � earns a higher
payo¤ than Pi and therefore also higher than all other composing strategies. Hence C must

be played in�nitely many times in the mixed population. Since there is only a �nite number
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of combinations (Pi; Pj), it also follows that there is at least one in which Pi plays C an

in�nite number of times.

Let (Pi; Pj) be a combination of strategies in which Pi plays C in�nitely often. Let

E (i; j) be the set of combinations of strategies (Pk; Pl) for which a
Pk;Pl
t = a

Pi;Pj
t 8 t, that

is, strategies Pk and Pl that follow the same path as when Pi interacts with Pj . Given

that P is a �nite mixture, there is a �nite time � 0 which is su¢ ciently large to determine

whether or not (Pk; Pl) 2 E (i; j), that is, there is a � 0 such that if aPk;Plt = a
Pi;Pj
t 8 t � � 0

then aPk;Plt = a
Pi;Pj
t 8 t. Let � 00 > � 0 be the �rst time t after � 0 at which aPi;Pjt;1 = C.

Let Ei (j) be the set of strategies Pl such that (Pi; Pl) 2 E (i; j). For all Pl 2 Ei (j) one
can de�ne Ql as the pure strategy that equals Pl for all histories, except for those in the setbH =

n
ht j t > � 00; au = aPj ;Piu for u � � 0 and a� 00;2 = D

o
. These histories only occur o¤ all

equilibrium paths, since the history up to and including � 0 implies that this history does not

occur along an equilibrium path outside E (i; j), as experienced by j, while the remainder

implies that it does not occur along equilibrium paths in E (i; j). For the histories ht 2 bH
we take Ql (ht) = a

Pj ;Pi
t = Pl

�
h
Pj ;Pi
t

�
. Obviously, the path of Ql against Pm is the same

as the path of Pl against Pm for all m, 1 � m � n and all Pl 2 Ei (j). De�ne Q as the

strategy that plays Ql with probability pl for Pl 2 Ei (j) and Pl with probability pl for all
Pl =2 Ei (j). For this strategy we have that �(Q;P ) = � (P; P ) = � (Q;Q) = � (P;Q) :
Let R be the strategy that equals Pi, except for h

Pi;Pj
� 00 , for which we take R

�
h
Pi;Pj
� 00

�
= D

and except for histories that are elements of the set eH =
n
ht j t > � 00; au = aPi;Pju for u � � 0 and a� 00;1 = D

o
,

for which we take R (ht) = Pi
�
h
Pi;Pj
t

�
; ht 2 eH.

Because P is an equilibrium, it must be that �(R;P ) � �(P; P ). It is also clear that
�(R;Q) > �(Q;Q) = � (P;Q), because R improves itself against strategies Ql 2 Ei (j) at
time � 00 without being punished and remains unchanged against strategies that are not in

Ei (j). As �(R;Q) > �(Q;Q), while �(P; P ) = � (Q;P ) and �(P;Q) = � (Q;Q), P is

not weakly robust against indirect invasions.

Note that if Ql = Pl 8 Pl 2 Ei (j), that would contradict P being an equilibrium,

because if P = Q then �(R;Q) > �(Q;Q) would contradict that �(R;P ) � �(P; P ).

B.2

Proof of Theorem 9 Assume that P is an equilibrium (if it is not, it it trivially not

robust against indirect invasions). Take i; j and � such that �ij;� = mink;l;t �kl;t. For all

Pl 2 Ei (j)� one can de�ne Ql as the pure strategy that equals Pl for all histories, except for
those that are elements of the set bH = fht j t > �; au;2 = C; u � �g. These histories only
occur o¤ all equilibrium paths; the assumption implies that �ij;� < 1 and hence it is not

possible that aPl;Pi�;2 = C, for that would make �1
�
aPi;Pl�

�
��1

�
C; aPi;Pl�

�
= 0 8 Pl 2 Ei (j)� .

For those histories ht 2 bH we take Ql (ht) = C. Obviously, the path of Ql against Pm

is the same as the path of Pl against Pm for all m, 1 � m � n and all Pl 2 Ei (j)� .
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De�ne Q as the strategy that plays Ql with probability pl for Pl 2 Ei (j)� and Pl with
probability pl for all Pl =2 Ei (j). Consequently the corresponding payo¤s are also equal;
�(Q;P ) = � (P; P ) = � (Q;Q) = � (P;Q).

Now let R be the strategy that equals Pi, except for the history h
Pi;Pj
� , for which we

choose R
�
h
Pi;Pj
�

�
= C and except for the histories that are elements of the set eH =n

ht j t > �; au = aPi;Pju for u < � , a�;1 = C and au;2 = C; u > �
o
, for which we also take

R (ht) = C; ht 2 eH.
Because P is an equilibrium, it must be that �(R;P ) � �(P; P ). It is also clear that

�(R;Q) > �(Q;Q) = � (P;Q), because R improves itself against strategies Ql 2 Ei (j) at
time � 00 without being punished and remains unchanged against strategies that are not in

Ei (j)� . As �(R;Q) > �(Q;Q), while �(P; P ) = � (Q;P ) and �(P;Q) = � (Q;Q), P is

not weakly robust against indirect invasions.

Note again that if Ql = Pl 8 Pl 2 Ei (j)� , that would contradict P being an equilibrium,
because if P = Q then �(R;Q) > �(Q;Q) would contradict that �(R;P ) � �(P; P ).

C The best responder

In order to be able to determine if a �nite automaton - and hence a pure strategy - is a Nash

equilibrium, we have constructed a small routine in the program called the best responder.

This routine �nds the payo¤ of the best response against strategy S, as well as a best

response. If the payo¤ of S against itself equals this payo¤, then S is a Nash equilibrium.

This is a useful device, since the in�nity of the strategy space does not allow us to simply

compare the payo¤ of S against itself to the payo¤ of all other strategies against S one

after the other.

Suppose strategy S is an automaton with K states. Any state k is characterized by an

action played by S when it �nds itself in this state, and a list of transitions as a function of

the action played by the opponent of S. With a slightly abusive notation - S is a function

of histories elsewhere, while here it is easier to make it a function of states - we will write

the �rst as S : f1; :::;Kg ! A and the latter as tk : A! f1; :::;Kg, k = 1; :::;K.
The value of being in state k is denoted by V (k). We aim to �nd a solution to the

following system:

V (k) = max
a2A

f�1 (a; S (k)) + �V (tk (a))g k = 1; :::;K

Let V � (k) ; k = 1; :::;K be the solution to this system. The discounted value in the initial

state, (1� �)V � (1), is the maximal discounted payo¤ to be earned against S, and a�k =
argmaxa2A f�1 (a; S (k)) + �V � (tk (a))g gives the optimal action when S is in state k.
The best responder does the following iteration.
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Initialisation step:

V1 (k) = 0; k = 1; :::;K

Iteration step:

Vn+1 (k) = max
a2A

f�1 (a; S (k)) + �Vn (tk (a))g k = 1; :::;K

It is quite straightforward that this iteration converges, as is shown in the following simple

lemma. We will assume that the initialisation makes sure that we begin with values for all

states that are below the solution of the system (whenever this procedure is invoked, we

make sure that is in fact the case) but that is not actually necessary for convergence.

Lemma 10 If V1 (k) � V � (k) for all k and if � 2 [0; 1) then the above iteration converges
to V � (k) ; k = 1; :::;K.

Proof. First, if Vn (k) � V � (k) for all k, then also

Vn+1 (k) = max
a2A

f�1 (a; S (k)) + �Vn (tk (a))g

� max
a2A

f�1 (a; S (k)) + �V � (tk (a))g = V � (k) for all k.

Hence V � (k)� Vn (k) � 0 for all states k and all iterations n.
By de�nition we also have

Vn+1 (k) � �1 (a�k; S (k)) + �Vn (tk (a�k)) for all k.

Therefore

0 � V � (k)� Vn+1 (k) � � (V � (tk (a�k))� Vn (tk (a�k))) for all k.

This implies that

0 � max
k
(V � (k)� Vn+1 (k)) � �max (V � (k)� Vn (k))

and since � < 0 we �nd that limn!1 (V � (k)� Vn (k)) = 0 for all k.

The best responder gives us both the maximum payo¤ (1� �)V � (1) when playing against
S, and an optimal strategy when playing against S, as a�k prescribes what to play when S

is in state k. For numerical reasons, we actually use the latter. It is important for us to

determine whether or not the payo¤ of S against itself is exactly equal to the maximum

payo¤when playing against S. The iteration with which the best responder �nds the latter

can have a numerical inaccuracy in it, and the evaluating the payo¤ of two given strategies

32



against each other (here: S against S) can too. These are however di¤erent inaccuracies, so

in order to have the same inaccuracies in both, we use the strategy that the best responder

gives, �rst let it play that against S, then let S play against itself, and compare the two

payo¤s. If they are equal, then S is a best response to itself.

Note that the computer program works with phenotypes, not with genotypes, so two

di¤erent ways to encode for instance the strategy AllD will be treated as one and the same

strategy.

D A typical sequence of strategies

The relevant payo¤s for the sequence of strategies that go with the transitions indicated in

Fig. 3 are given below. The population starts at All D. The �rst indirect invasion (a neutral

mutant followed by a mutant with a selective advantage) brings the population to a mixture

of the two mutants. This mixture is an equilibrium when the strategy is restricted to these

two strategies, but not for the unrestricted strategy space; the mixture is outperformed

by a third mutant that appears at marker C. This mutant #3 dominates mutant #2, and

once #2 has disappeared, it dominates mutant #1, and goes to �xation. This establishes

full cooperation. After this we get an indirect invasion back to All D, and �nally we get

an indirect invasion that establishes a strategy that, when played against itself, starts with

defection, and then plays cooperate ever after.

1 1 4

1 1 347 2 27
0 1 27 3 3

1 57 3 3 3 3
4

3 3 0

1 34 4 1 1 1 67
1 1 1 109175
4
7 1 1235 2 12

The actual automata are on the next page.

33



 

D

c, d 

d

D

d

c

C

c

d

C

c 

c

C

d 

D

c d

c

C

c

d 

D

d 

d

D

c

d

D

d 

C

c c

C 

c

c, d 

d

D 

C

c, d 

D

c, d 

neutral

advantageous, towards a mix of mutant and incumbent  

advantageous, only the mutant survives

neutral

advantageous

neutral

advantageous 



E Measures of cooperativeness and reciprocity3

There are two reasons why we would like to have measures for cooperativeness and reci-

procity. The �rst and most important reason is obvious; we would simply like to know

how cooperative, and how reciprocal, strategies are. The second reason is that these mea-

sures may serve as an indication of indirect invasions. Typically an indirect invasion is

characterized by a change in reciprocity followed by a change in cooperativeness.

Any measure of cooperativeness will have to weigh the di¤erent histories, and as we will

see, every choice how to weigh them has appealing properties and drawbacks. In contrast to

earlier de�nitions, here it is more natural to look at histories that only re�ect what actions

the other player has played. This captures all relevant histories for the measurement of

cooperativeness, because what a strategy S itself has played is uniquely determined by the

history of actions by the other player.

h1 = ()

ht = (a1;2; :::; at�1;2) ; t = 2; 3; :::

Again, we will sometimes also write
�
ht; at;2

�
for a history ht+1, and we get the following

sets of possible histories at time t

H1 =
�
h1
	

Ht =
Qt�1
i=1 A t = 2; 3; :::

With the repeated prisonners dilemma we have A = fC;Dg, so in that case there are 2t�1

histories ht 2 Ht

We begin with a measure that tells us how cooperative a strategy is, given that it is

facing a history ht. If we weigh a history at time t+ s with the probability that the game

actually reaches round t + s � 1, given that it has already reached round t � 1, and if we
also divide by the number of di¤erent histories of length t+s�1, under the restriction that
the �rst t� 1 rounds of these histories are given by ht, we get the following. Note that this
measure does not depend on the environment a strategy is in.

C
�
S; ht

�
= (1� �)

1X
s=0

�
�
2

�s
0BBBB@

X
h2Ht+s

h
i
=h

i
t;i=1;:::;t�1

1fS(h)=Cg

1CCCCA
The overall cooperativeness of a strategy S can then be de�ned as the cooperativeness at

the beginning, where we have the empty history; C (S) = C
�
S; h1

�
.

3This is meant to only appear on www.creedexperiment.nl/evolution, where one can run simulations

and measure cooperativeness and reciprocity of the evolving population
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Always Cooperate Always defect Condition on �rst move

Tit for Tat Tat for Tit Tit for Two Tats

Grim Trigger DTFT / Negative handshake Win-stay, lose-shift

An intuition for what this measure does can be gained from the above �gure. The top bar

represents the empty history. The second bar represents histories of length 1, and is split in

two; the history where the other has cooperated, and the one where the other has defected.

The third bar represents histories of lenth 2, and is split in four; the histories CC, CD, DC

and DD. This continues inde�nitely, but for the pictures we restrict ourselves to histories
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of length 5 or less. If a part is blue, then that means that the strategy reacts to this history

with cooperation, if it is red, then the strategy reacts with defection. Cooperativeness

weighs the blueness of those pictures.

It is obvious that C (AllC) = 1 and that C (AllD) = 0. A strategy that starts with

cooperation, and further conditions play on the �rst move entirely has cooperativeness

1� �
2 . This is sensible; if � = 0, then the �rst move is the only move, and since this strategy

cooperates on the �rst move, it should have cooperativeness measure 1. On the other hand,

except for the �rst move, this strategy cooperates in exactly half of the histories of length

t for all t > 1. Therefore it makes sense that if � goes to 1, then cooperativeness goes to 1
2 .

More simple computations shows that C (TitForTat) = 1� �
2 , C (TatForT it) =

�
2 and

C (TitForTwoTats) = 3
4 +

1��2
4 . The last simple computation shows that C (GRIM) =

2�2�
2�� , which is 1 at � = 0 for similar reasons, and goes to 0 if � goes to 1.

4

A measure for reciprocity can be constructed by comparing how much the cooperativeness

of strategy S is changed if its opponent plays D rather than C. Again, histories of the same

length are weighted equally here.

R (S) =
1X
t=1

X
h2Ht

�
�
2

�t�1 �
C
�
S;
�
h;C

��
� C

�
S;
�
h;D

���
In the �gure above, this is visualized as the di¤erence in blueness below two neighbouring

bits that share their history up to the one before last period.

Simple calculations now give that R (AllC) = R (AllD) = 0 and R (TFT ) = 1. Also,

if we look at a strategy that only conditions on the �rst move and that defects forever if

the �rst move of the other was D, and cooperates forever if the �rst move of the other was

C, this strategy also has reciprocity 1. It is not hard to see that �1 and +1 are in fact
the lower and upper bounds for reciprocity with this equal weighing of all strategies of the

same length. Also R (GRIM) = 4(1��)
(2��)2 . Note that here the reciprocity of Grim Trigger is

lower than that of TFT , which is due to the fact that for many histories GRIM will only

play a sequence of D�s either way.5

Alternatively we could measure the cooperativeness and reciprocity of a strategy given

the population it is in. In that case, we should not weight all histories of a given length

equally, but in the proportions in which they do occur given the actual population of

4C (TFT ) = (1� �)
 
1 +

1X
t=1

1
2
�t

!
= 1

2
(1� �) + 1

2

C (GRIM) = (1� �)
1X
t=0

�
1
2
�
�t
= (1� �) 1

1� �
2

= 2�2�
2��

5R (TFT ) =
1X
t=1

X�
�
2

�t�1 �
1
2
+ 1

2
(1� �)�

�
1
2
� 1

2
(1� �)

��
2t�1 =

1X
t=1

�t�1 (1� �) = 1

R (GRIM) =

1X
t=1

�
�
2

�t�1 h
2�2�
2�� � 0

i
=

4(1��)
(2��)2
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strategies. Hence the weight
�
1
2

�t�1
, which is one divided by the number of strategies in

Ht, will then be replaced by their actual proportions. For instance, in a population that

consists of any mixture of AllC, TFT and GRIM , the only history at time t that occurs, is

a sequences of t�1 consecutive C�s. The measure for cooperativeness then simply becomes
the expected times a strategy plays C divided by the expected number of rounds.

Suppose the population is given by a vector of frequencies x = [x1; :::; xN ] where xi is

the frequency of strategy Si. Then we de�ne the population-dependent cooperativeness of

a strategy S as follows:

Cx (S) = (1� �)
1X
t=1

�t�1

 
NX
i=1

xi1nS�hS;Sit

�
=C

o
!

In the population with only AllC, TFT and GRIM , cooperativeness of all these three

strategies is 1. In an in�nitely large population of � TFT and 1�� AllD, cooperativeness
of TFT is 1� � + ��.

A reasonable way of measuring reciprocity is to compare actual histories with histories that

would have unfolded after one-step deviations. So let hS;Tt;a;s be the history that for the �rst

t� 1 steps unfolds recurcively between strategy S and T - as above;

hS;T1 = ()

and the recursion step

aS;Ti =
�
S
�
hS;Ti

�
; T
�
hS;T i

��
hS;Ti+1 =

�
hi; a

S;T
i

�
; i = 1; 2; :::; t� 1.

Only at time t the opponent plays a, while strategy S does not deviate and plays S
�
hS;Tt

�
;

aS;Tt =
�
S
�
hS;Tt

�
; a
�

hS;Tt+1 =
�
hi; a

S;T
t

�
.

After that we go back to the normal recursion step

aS;Ti =
�
S
�
hS;Ti

�
; T
�
hS;T i

��
hS;Ti+1 =

�
hi; a

S;T
i

�
; i = t+ 1; :::t+ s

If T
�
hS;T i

�
= a, then this is hS;Tt;a;s is just the actual history h

S;T
t+1+s, but if T

�
hS;T i

�
6= a,

it is a counterfactual history after a one-step deviation. The history h
S;T

t;a;s, as above, just

gives the actions of player T and ignores those of player S.
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With this de�nition, we can make a measure for reciprocity as follows:

Rx (S) = (1� �)2
1X
t=1

�t�1
NX
i=1

xi

1X
s=0

�s
�
1n

S
�
h
S;Si
t;C;s

�
=C

o � 1n
S
�
h
S;Si
t;D;s

�
=C

o�

In a population of GRIM only, it is relatively easy to see that the reciprocity of GRIM

is 1; the path of play between GRIM and itself is just a sequence of C�s, while after a

deviation GRIM just plays a sequence of D�s. So at any time t, the discounted di¤erence

between these sequence from then on, normalised by multiplying by one of the (1� �)�s, is
1. So discounting over t and normalizing by the other (1� �) gives a reciprocity measure
of 1.

In a population of TFT only, the reciprocity of TFT is 1
1+� . Again, the path of play

between TFT and itself is a sequence of C�s, but now, on the path after any deviation,

TFT plays a sequence of alternating D�s and C�s. So at any time t, the discounted and

normalized di¤erence between them is (1� �)
�

1
1�� �

�
1��2

�
= 1

1+� . So discounting over t

and normalizing by the other (1� �) gives the same number.
This comparison is in line with what we might want from a reciprocity measure that

depends on the actual population; at any stage, the threat that grim trigger poses to itself

is maximal, and larger than the threat TFT poses to itself.

Another comparison shows that this measure also picks up the fact that, if the pun-

ishment in Grim Trigger is in fact triggered on the path of play, then on the remainder of

the path, GRIM is actually not reciprocal at all anymore. With TFT on the other hand,

reciprocity actually remains the same, whether the punishment has been triggered in the

past or not. This is re�ected in the following example.

In a population of � TitForTat and (1� �) TatForT it, the reciprocity of TitForTat is
� 1
1+� +(1� �)

1
1+� =

1
1+� ; the reciprocity of TitForTat against itself was computed above,

and for the computation of TitForTat against TatForT it it is enough to realize that the

comparison between actual and counterfactual is between DCDC::: versus CCCC::: at odd

t�s and between CDCD::: versus DDDD::: at even t�s.

In a population of � GRIM and 1 � � TatForT it, the reciprocity of GRIM is � +

(1� �) (1� �) = 1 � � + ��; in the latter interaction, GRIM only alters its behaviour

in response to a change at t = 1. So for not too large � - implying that there is enough

TatForT it to have a noticeable e¤ect of the punishment being triggered - and not too small

�, GRIM now is actually less reciprocal than TitForTat.

Dependence on the population a strategy �nds itself in can be seen as a good or a bad

thing. For picking up indirect invasions, it seems to be a good thing; changes �far o¤�

the current path of play between strategies do not change this reciprocity measure; it only

changes if a strategy mutates into one that reacts di¤erently to a one-step deviation. This

implies that only becoming more or becoming less reciprocal in the way that is relevant

for indirect invasions is picked up. On the other hand, it does not lend itself for a general,
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environment-independent statement of how reciprocal or cooperative a strategy is.

Another possibility is to only look at the actions directly after a one-step deviation. Then

we would get

Rx (S) = (1� �)
1X
t=1

�t�1
NX
i=1

xi

�
1n

S
�
h
S;Si
t ;C

�
=C

o � 1n
S
�
h
S;Si
t ;D

�
=C

o�

Here the reciprocity of AllC is 0 again. The reciprocity of both TFT and GRIM in a

population of TFT , GRIM and AllC is 1 here.
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