76,153 research outputs found
Collapse of the ESR fine structure throughout the coherent temperature of the Gd-doped Kondo Semiconductor
Experiments on the Electron Spin Resonance (ESR) in the filled
skutterudite (), at temperatures
where the host resistivity manifests a smooth insulator-metal crossover,
provides evidence of the underlying Kondo physics associated with this system.
At low temperatures (below ), behaves
as a Kondo-insulator with a relatively large hybridization gap, and the
ESR spectra displays a fine structure with lorentzian line shape,
typical of insulating media. The electronic gap is attributed to the large
hybridization present in the coherent regime of a Kondo lattice, when Ce
4f-electrons cooperate with band properties at half-filling. Mean-field
calculations suggest that the electron-phonon interaction is fundamental at
explaining the strong 4f-electron hybridization in this filled skutterudite.
The resulting electronic structure is strongly temperature dependent, and at
about the system undergoes an insulator-to-metal
transition induced by the withdrawal of 4f-electrons from the Fermi volume, the
system becoming metallic and non-magnetic. The ESR fine structure
coalesces into a single dysonian resonance, as in metals. Still, our
simulations suggest that exchange-narrowing via the usual Korringa mechanism,
alone, is not capable of describing the thermal behavior of the ESR spectra in
the entire temperature region ( - K). We propose that temperature
activated fluctuating-valence of the Ce ions is the missing ingredient that,
added to the usual exchange-narrowing mechanism, fully describes this unique
temperature dependence of the ESR fine structure observed in
.Comment: 19 pages, 6 figure
Recent results on self-dual configurations on the torus
We review the recent progress on our understanding of self-dual SU(N)
Yang-Mills configurations on the torus.Comment: Latex 3 pages, 1 figure. Contribution to the Lat99 Proceeding
An HST/COS legacy survey of intervening SiIII absorption in the extended gaseous halos of low-redshift galaxies
Doubly ionized silicon (SiIII) is a powerful tracer of diffuse ionized gas
inside and outside of galaxies. It can be observed in the local Universe in
ultraviolet (UV) absorption against bright extragalactic background sources. We
here present an extensive study of intervening SiIII-selected absorbers and
their relation to the circumgalactic medium (CGM) of galaxies at low redshift
(z<=0.1), based on the analysis of UV absorption spectra along 303
extragalactic lines of sight obtained with the Cosmic Origins Spectrograph
(COS) on board the Hubble Space Telescope (HST). Along a total redshift path of
Dz=24 we identify 69 intervening SiIII systems that all show associated
absorption from other low and high ions. We derive a bias-corrected number
density of dN/dz(SiIII)=2.5 for absorbers with column densities log
N(SiIII)>12.2. We develop a geometrical model for the absorption-cross section
of the CGM around the local galaxy population and find excellent agreement
between the model predictions and the observations. We further compare
redshifts and positions of the absorbers with that of ~64,000 galaxies using
archival galaxy-survey data. For the majority of the absorbers we identify
possible host galaxies within 300 km/s of the absorbers and derive impact
parameters rho<200 kpc, demonstrating that the spatial distributions of SiIII
absorbers and galaxies are highly correlated. Our study indicates that the
majority of SiIII-selected absorbers in our sample trace the CGM of nearby
galaxies within their virial radii at a typical covering fraction of ~70 per
cent. From a detailed ionization model we estimate that diffuse gas in the CGM
around galaxies, as traced by SiIII, contains substantially more baryonic mass
than their neutral interstellar medium.Comment: 32 pages, 17 figures; final version accepted for publication in A&
Thermally activated exchange narrowing of the Gd3+ ESR fine structure in a single crystal of Ce1-xGdxFe4P12 (x = 0.001) skutterudite
We report electron spin resonance (ESR) measurements in the Gd3+ doped
semiconducting filled skutterudite compound Ce1-xGdxFe4P12 (x = 0.001). As the
temperature T varies from T = 150 K to T = 165 K, the Gd3+ ESR fine and
hyperfine structures coalesce into a broad inhomogeneous single resonance. At T
= 200 K the line narrows and as T increases further, the resonance becomes
homogeneous with a thermal broadening of 1.1(2) Oe/K. These results suggest
that the origin of these features may be associated to a subtle interdependence
of thermally activated mechanisms that combine: i) an increase with T of the
density of activated conduction-carriers across the T-dependent semiconducting
pseudogap; ii) the Gd3+ Korringa relaxation process due to an exchange
interaction, J_{fd}S.s, between the Gd3+ localized magnetic moments and the
thermally activated conduction-carriers and; iii) a relatively weak confining
potential of the rare-earth ions inside the oversized (Fe2P3)4 cage, which
allows the rare-earths to become rattler Einstein oscillators above T = 148 K.
We argue that the rattling of the Gd3+ ions, via a motional narrowing
mechanism, also contributes to the coalescence of the ESR fine and hyperfine
structure.Comment: 7 pages, 9 figures, accepted for publication in Phys Rev
What Produced the Ultraluminous Supernova Remnant in NGC 6946?
The ultraluminous supernova remnant (SNR) in NGC 6946 is the brightest known
SNR in X-rays, ~1000 times brighter than Cas A. To probe the nature of this
remnant and its progenitor, we have obtained high-dispersion optical echelle
spectra. The echelle spectra detect H-alpha, [N II], and [O III] lines, and
resolve these lines into a narrow (FWHM ~20--40 km/s) component from un-shocked
material and a broad (FWHM ~250 km/s) component from shocked material. Both
narrow and broad components have unusually high [N II]/H-alpha ratios, ~1.
Using the echelle observation, archival HST images, and archival ROSAT X-ray
observations, we conclude that the SNR was produced by a normal supernova,
whose progenitor was a massive star, either a WN star or a luminous blue
variable. The high luminosity of the remnant is caused by the supernova ejecta
expanding into a dense, nitrogen-rich circumstellar nebula created by the
progenitor.Comment: 20 pages, 5 figures. To be published in The Astronomical Journal,
March 200
- …