457 research outputs found

    Speech Communication

    Get PDF
    Contains research objectives and summary of research on six research projects and reports on three research projects.National Institutes of Health (Grant 5 RO1 NS04332-13)National Institutes of Health (Fellowship 1 F22 MH5825-01)National Institutes of Health (Grant 1 T32 NS07040-01)National Institutes of Health (Fellowship 1 F22 NS007960)National Institutes of Health (Fellowship 1 F22 HD019120)National Institutes of Health (Fellowship 1 F22 HD01919-01)U. S. Army (Contract DAAB03-75-C-0489)National Institutes of Health (Grant 5 RO1 NS04332-12

    A parametric model for the changes in the complex valued conductivity of a lung during tidal breathing

    Get PDF
    Classical homogenization theory based on the Hashin-Shtrikman coated ellipsoids is used to model the changes in the complex valued conductivity (or admittivity) of a lung during tidal breathing. Here, the lung is modeled as a two-phase composite material where the alveolar air-filling corresponds to the inclusion phase. The theory predicts a linear relationship between the real and the imaginary parts of the change in the complex valued conductivity of a lung during tidal breathing, and where the loss cotangent of the change is approximately the same as of the effective background conductivity and hence easy to estimate. The theory is illustrated with numerical examples, as well as by using reconstructed Electrical Impedance Tomography (EIT) images based on clinical data from an ongoing study within the EU-funded CRADL project. The theory may be potentially useful for improving the imaging algorithms and clinical evaluations in connection with lung EIT for respiratory management and monitoring in neonatal intensive care units

    Intestinal Resident Yeast Candida glabrata Requires Cyb2p-Mediated Lactate Assimilation to Adapt in Mouse Intestine

    Get PDF
    The intestinal resident Candida glabrata opportunistically infects humans. However few genetic factors for adaptation in the intestine are identified in this fungus. Here we describe the C. glabrata CYB2 gene encoding lactate dehydrogenase as an adaptation factor for survival in the intestine. CYB2 was identified as a virulence factor by a silkworm infection study. To determine the function of CYB2, we analysed in vitro phenotypes of the mutant Δcyb2. The Δcyb2 mutant grew well in glucose medium under aerobic and anaerobic conditions, was not supersensitive to nitric oxide which has fungicidal-effect in phagocytes, and had normal levels of general virulence factors protease, lipase and adherence activities. A previous report suggested that Cyb2p is responsible for lactate assimilation. Additionally, it was speculated that lactate assimilation was required for Candida virulence because Candida must synthesize glucose via gluconeogenesis under glucose-limited conditions such as in the host. Indeed, the Δcyb2 mutant could not grow on lactate medium in which lactate is the sole carbon source in the absence of glucose, indicating that Cyb2p plays a role in lactate assimilation. We hypothesized that Cyb2p-mediated lactate assimilation is necessary for proliferation in the intestinal tract, as the intestine is rich in lactate produced by bacteria flora, but not glucose. The Δcyb2 mutant showed 100-fold decreased adaptation and few cells of Saccharomyces cerevisiae can adapt in mouse ceca. Interestingly, C. glabrata could assimilate lactate under hypoxic conditions, dependent on CYB2, but not yeast S. cerevisiae. Because accessible oxygen is limited in the intestine, the ability for lactate assimilation in hypoxic conditions may provide an advantage for a pathogenic yeast. From those results, we conclude that Cyb2p-mediated lactate assimilation is an intestinal adaptation factor of C. glabrata

    Improvement of renal oxidative stress markers after ozone administration in diabetic nephropathy in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several complications of diabetes mellitus (DM) e.g. nephropathy (DN) have been linked to oxidative stress. Ozone, by means of oxidative preconditioning, may exert its protective effects on DN.</p> <p>Aim</p> <p>The aim of the present work is to study the possible role of ozone therapy in ameliorating oxidative stress and inducing renal antioxidant defence in streptozotocin (STZ)-induced diabetic rats.</p> <p>Methods</p> <p>Six groups (n = 10) of male Sprague Dawley rats were used as follows: Group C: Control group. Group O: Ozone group, in which animals received ozone intraperitoneally (i.p.) (1.1 mg/kg). Group D: Diabetic group, in which DM was induced by single i.p. injections of streptozotocin (STZ). Group DI: Similar to group D but animals also received subcutaneous (SC) insulin (0.75 IU/100 gm BW.). Group DO: In which diabetic rats received the same dose of ozone, 48 h after induction of diabetes. Group DIO, in which diabetic rats received the same doses of insulin and ozone, respectively. All animals received daily treatment for six weeks. At the end of the study period (6 weeks), blood pressure, blood glycosylated hemoglobin (HbA<sub>1c</sub>), serum creatinine, blood urea nitrogen (BUN), kidney tissue levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPx), aldose reductase (AR) activities and malondialdehyde (MDA) concentration were measured.</p> <p>Results</p> <p>Induction of DM in rats significantly elevated blood pressure, HbA<sub>1c</sub>, BUN, creatinine and renal tissue levels of MDA and AR while significantly reducing SOD, CAT and GPx activities. Either Insulin or ozone therapy significantly reversed the effects of DM on all parameters; in combination (DIO group), they caused significant improvements in all parameters in comparison to each alone.</p> <p>Conclusions</p> <p>Ozone administration in conjunction with insulin in DM rats reduces oxidative stress markers and improves renal antioxidant enzyme activity which highlights its potential uses in the regimen for treatment of diabetic patients.</p

    The Renin-Angiotensin-Aldosterone system in patients with depression compared to controls – a sleep endocrine study

    Get PDF
    BACKGROUND: Hypercortisolism as a sign of hypothamamus-pituitary-adrenocortical (HPA) axis overactivity and sleep EEG changes are frequently observed in depression. Closely related to the HPA axis is the renin-angiotensin-aldosterone system (RAAS) as 1. adrenocorticotropic hormone (ACTH) is a common stimulus for cortisol and aldosterone, 2. cortisol release is suppressed by mineralocorticoid receptor (MR) agonists 3. angiotensin II (ATII) releases CRH and vasopressin from the hypothalamus. Furthermore renin and aldosterone secretion are synchronized to the rapid eyed movement (REM)-nonREM cycle. METHODS: Here we focus on the difference of sleep related activity of the RAAS between depressed patients and healthy controls. We studied the nocturnal plasma concentration of ACTH, cortisol, renin and aldosterone, and sleep EEG in 7 medication free patients with depression (1 male, 6 females, age: (mean +/-SD) 53.3 ± 14.4 yr.) and 7 age matched controls (2 males, 5 females, age: 54.7 ± 19.5 yr.). After one night of accommodation a polysomnography was performed between 23.00 h and 7.00 h. During examination nights blood samples were taken every 20 min between 23.00 h and 7.00 h. Area under the curve (AUC) for the hormones separated for the halves of the night (23.00 h to 3.00 h and 3.00 h to 7.00 h) were used for statistical analysis, with analysis of co variance being performed with age as a covariate. RESULTS: No differences in ACTH and renin concentrations were found. For cortisol, a trend to an increase was found in the first half of the night in patients compared to controls (p < 0.06). Aldosterone was largely increased in the first (p < 0.05) and second (p < 0.01) half of the night. Cross correlations between hormone concentrations revealed that in contrast to earlier findings, which included only male subjects, in our primarily female sample, renin and aldosterone secretion were not coupled and no difference between patients and controls could be found, suggesting a gender difference in RAAS regulation. No difference in conventional sleep EEG parameters were found in our sample. CONCLUSION: Hyperaldosteronism could be a sensitive marker for depression. Further our findings point to an altered renal mineralocorticoid sensitivity in patients with depression
    • …
    corecore