333 research outputs found

    Electron-Phonon Driven Spin Frustration in Multi-Band Hubbard Models: MX Chains and Oxide Superconductors

    Get PDF
    We discuss the consequences of both electron-phonon and electron-electron couplings in 1D and 2D multi-band (Peierls-Hubbard) models. After briefly discussing various analytic limits, we focus on (Hartree-Fock and exact) numerical studies in the intermediate regime for both couplings, where unusual spin-Peierls as well as long-period, frustrated ground states are found. Doping into such phases or near the phase boundaries can lead to further interesting phenomena such as separation of spin and charge, a dopant-induced phase transition of the global (parent) phase, or real-space (``bipolaronic'') pairing. We discuss possible experimentally observable consequences of this rich phase diagram for halogen-bridged, transition metal, linear chain complexes (MX chains) in 1D and the oxide superconductors in 2D.Comment: 6 pages, four postscript figures (appended), in regular Te

    Photoinduced charge separation in Q1D heterojunction materials: Evidence for electron-hole pair separation in mixed-halide MXMX solids

    Full text link
    Resonance Raman experiments on doped and photoexcited single crystals of mixed-halide MXMX complexes (MM=Pt; XX=Cl,Br) clearly indicate charge separation: electron polarons preferentially locate on PtBr segments while hole polarons are trapped within PtCl segments. This polaron selectivity, potentially very useful for device applications, is demonstrated theoretically using a discrete, 3/4-filled, two-band, tight-binding, extended Peierls-Hubbard model. Strong hybridization of the PtCl and PtBr electronic bands is the driving force for separation.Comment: n LaTeX, figures available by mail from JTG ([email protected]

    Improved Mean-Field Scheme for the Hubbard Model

    Full text link
    Ground state energies and on-site density-density correlations are calculated for the 1-D Hubbard model using a linear combination of the Hubbard projection operators. The mean-field coefficients in the resulting linearized Equations of Motion (EOM) depend on both one-particle static expectation values as well as static two-particle correlations. To test the model, the one particle expectation values are determined self-consistently while using Lanczos determined values for the two particle correlation terms. Ground state energies and on-site density-density correlations are then compared as a function of UU to the corresponding Lanczos values on a 12 site Hubbard chain for 1/2 and 5/12 fillings. To further demonstrate the validity of the technique, the static correlation functions are also calculated using a similar EOM approach, which ignores the effective vertex corrections for this problem, and compares those results as well for a 1/2 filled chain. These results show marked improvement over standard mean-field techniques.Comment: 10 pages, 3 figures, text and figures as one postscript file -- does not need to be "TeX-ed". LA-UR-94-294

    High order analysis of the limit cycle of the van der Pol oscillator

    Get PDF
    We have applied the Lindstedt-Poincaré method to study the limit cycle of the van der Pol oscillator, obtaining the numerical coefficients of the series for the period and for the amplitude to order 859. Hermite-Padé approximants have been used to extract the location of the branch cut of the series with unprecedented accuracy (100 digits). Both series have then been resummed using an approach based on Padé approximants, where the exact asymptotic behaviors of the period and the amplitude are taken into account. Our results improve drastically all previous results obtained on this subject.Fil: Amore, Paolo. Universidad de Colima; MéxicoFil: Boyd, John P.. University of Michigan; Estados UnidosFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentin

    Simulation Studies on the Stability of the Vortex-Glass Order

    Full text link
    The stability of the three-dimensional vortex-glass order in random type-II superconductors with point disorder is investigated by equilibrium Monte Carlo simulations based on a lattice XY model with a uniform field threading the system. It is found that the vortex-glass order, which stably exists in the absence of screening, is destroyed by the screenng effect, corroborating the previous finding based on the spatially isotropic gauge-glass model. Estimated critical exponents, however, deviate considerably from the values reported for the gauge-glass model.Comment: Minor modifications made, a few referenced added; to appear in J. Phys. Soc. Jpn. Vol.69 No.1 (2000

    Relativistic quasipotential equations with u-channel exchange interactions

    Get PDF
    Various quasipotential two-body scattering equations are studied at the one-loop level for the case of tt- and uu-channel exchange potentials. We find that the quasipotential equations devised to satisfy the one-body limit for the tt-channel exchange potential can be in large disagreement with the field-theoretical prediction in the case of uu-channel exchange interactions. Within the spectator model, the description of the uu-channel case improves if another choice of the spectator particle is made. Since the appropriate choice of the spectator depends strongly on the type of interaction used, one faces a problem when both types of interaction are contained in the potential. Equal-time formulations are presented, which, in the light-heavy particle system corresponding to the mass situation of the πN\pi N system, approximate in a reasonable way the field-theoretical result for both types of interactions.Comment: Revtex, 20 pages, 12 PostScript figures, to appear in Phys. Rev.

    Pressure Tuning of the Charge Density Wave in the Halogen-Bridged Transition-Metal (MX) Solid Pt2Br6(NH3)4Pt_2Br_6(NH_3)_4

    Full text link
    We report the pressure dependence up to 95 kbar of Raman active stretching modes in the quasi-one-dimensional MX chain solid Pt2Br6(NH3)4Pt_2Br_6(NH_3)_4. The data indicate that a predicted pressure-induced insulator-to-metal transition does not occur, but are consistent with the solid undergoing either a three-dimensional structural distortion, or a transition from a charge-density wave to another broken-symmetry ground state. We show that such a transition cacan be well-modeled within a Peierls-Hubbard Hamiltonian. 1993 PACS: 71.30.+h, 71.45.Lr, 75.30.Fv, 78.30.-j, 81.40.VwComment: 4 pages, ReVTeX 3.0, figures available from the authors on request (Gary Kanner, [email protected]), to be published in Phys Rev B Rapid Commun, REVISION: minor typos corrected, LA-UR-94-246

    Translational Correlations in the Vortex Array at the Surface of a Type-II Superconductor

    Get PDF
    We discuss the statistical mechanics of magnetic flux lines in a finite-thickness slab of type-II superconductor. The long wavelength properties of a flux-line liquid in a slab geometry are described by a hydrodynamic free energy that incorporates the boundary conditions on the flux lines at the sample's surface as a surface contribution to the free energy. Bulk and surface weak disorder are modeled via Gaussian impurity potentials. This free energy is used to evaluate the two-dimensional structure factor of the flux-line tips at the sample surface. We find that surface interaction always dominates in determining the decay of translational correlations in the asymptotic long-wavelength limit. On the other hand, such large length scales have not been probed by the decoration experiments. Our results indicate that the translational correlations extracted from the analysis of the Bitter patterns are indeed representative of behavior of flux lines in the bulk.Comment: 23 pages, 1 figure (not included), harvmac.tex macro needed (e-mail requests to [email protected] SU-CM-92-01

    Correlations in Two-Dimensional Vortex Liquids

    Full text link
    We report on a high temperature perturbation expansion study of the superfluid-density spatial correlation function of a Ginzburg-Landau-model superconducting film in a magnetic field. We have derived a closed form which expresses the contribution to the correlation function from each graph of the perturbation theory in terms of the number of Euler paths around appropriate subgraphs. We have enumerated all graphs appearing out to 10-th order in the expansion and have evaluated their contributions to the correlation function. Low temperature correlation functions, obtained using Pad\'{e} approximants, are in good agreement with Monte Carlo simulation results and show that the vortex-liquid becomes strongly correlated at temperatures well above the vortex solidification temperature.Comment: 18 pages (RevTeX 3.0) and 4 figures, available upon request, IUCM93-01
    corecore