325 research outputs found

    On Target Detection by Quantum Radar (Preprint)

    Full text link
    Both Noise Radar and Quantum Radar, with some alleged common features, exploit the randomness of the transmitted signal to enhance radar covertness and to reduce mutual interference. While Noise Radar has been prototypically developed and successfully tested in many environments by different organizations, the significant investments on Quantum Radar seem not to be followed by practically operating prototypes or demonstrators. Starting from the trivial fact that radar detection depends on the energy transmitted on the target and backscattered by it, some detailed evaluations in this work show that the detection performance of all the proposed QR types in the literature are orders of magnitude below the ones of a much simpler and cheaper equivalent classica radar set, in particular of the NR type. Moreover, the absence of a, sometimes alleged, Quantum radar cross section different from the radar cross section is explained. Hence, the various Quantum Radar proposals cannot lead to any useful result, especially, but not limited to, the alleged detection of stealth targets.Comment: 12 pages, 6 figures, 11 equations, 62 References. Not submitted. A "negative" result is obtained and presented with full details. This resuly is deemed useful and interesting according to the teachings by Karl Poppe

    Neural codes for one’s own position and direction in a real-world “vista” environment

    Get PDF
    Humans, like animals, rely on an accurate knowledge of one’s spatial position and facing direction to keep orientated in the surrounding space. Although previous neuroimaging studies demonstrated that scene-selective regions (the parahippocampal place area or PPA, the occipital place area or OPA and the retrosplenial complex or RSC), and the hippocampus (HC) are implicated in coding position and facing direction within small-(room-sized) and large-scale navigational environments, little is known about how these regions represent these spatial quantities in a large open-field environment. Here, we used functional magnetic resonance imaging (fMRI) in humans to explore the neural codes of these navigationally-relevant information while participants viewed images which varied for position and facing direction within a familiar, real-world circular square. We observed neural adaptation for repeated directions in the HC, even if no navigational task was required. Further, we found that the amount of knowledge of the environment interacts with the PPA selectivity in encoding positions: individuals who needed more time to memorize positions in the square during a preliminary training task showed less neural attenuation in this scene-selective region. We also observed adaptation effects, which reflect the real distances between consecutive positions, in scene-selective regions but not in the HC. When examining the multi-voxel patterns of activity we observed that scene-responsive regions and the HC encoded both spatial information and that the RSC classification accuracy for positions was higher in individuals scoring higher to a self-reported questionnaire of spatial abilities. Our findings provide new insight into how the human brain represents a real, large-scale “vista” space, demonstrating the presence of neural codes for position and direction in both scene-selective and hippocampal regions, and revealing the existence, in the former regions, of a map-like spatial representation reflecting real-world distance between consecutive positions

    Age-related effects on spatial memory across viewpoint changes relative to different reference frames

    Get PDF
    Remembering object positions across different views is a fundamental competence for acting and moving appropriately in a large-scale space. Behavioural and neurological changes in elderly subjects suggest that the spatial representations of the environment might decline compared to young participants. However, no data are available on the use of different reference frames within topographical space in aging. Here we investigated the use of allocentric and egocentric frames in aging, by asking young and older participants to encode the location of a target in a virtual room relative either to stable features of the room (allocentric environment-based frame), or to an unstable objects set (allocentric objects-based frame), or to the viewer's viewpoint (egocentric frame). After a viewpoint change of 0,circ,^{circ} (absent), 45,circ,^{circ} (small) or 135,circ,^{circ} (large), participants judged whether the target was in the same spatial position as before relative to one of the three frames. Results revealed a different susceptibility to viewpoint changes in older than young participants. Importantly, we detected a worst performance, in terms of reaction times, for older than young participants in the allocentric frames. The deficit was more marked for the environment-based frame, for which a lower sensitivity was revealed as well as a worst performance even when no viewpoint change occurred. Our data provide new evidence of a greater vulnerability of the allocentric, in particular environment-based, spatial coding with aging, in line with the retrogenesis theory according to which cognitive changes in aging reverse the sequence of acquisition in mental development

    On the anti‐intercept features of noise radars

    Get PDF
    Robustness against Electronic Warfare/Electronic Defence attacks represents an important advantage of Noise Radar Technology (NRT). An evaluation of the related Low Probability of Detection (LPD) and of Intercept (LPI) is presented for Continuous Emission Noise Radar (CE‐NR) waveforms with different operational parameters, that is, “tailored”, and with various “degrees of randomness”. In this frame, three different noise radar waveforms, a phase Noise (APCN) and two “tailored” noise waveforms (FMeth and COSPAR), are compared by time–frequency analysis. Using a correlator (i.e. a two antennas) receiver, assuming a complete knowledge of the band (B) and duration (T) of the coherent emission of these waveforms, it will be shown that the LPD features of a CE‐NR do not significantly differ from those of any CE radar transmitting deterministic waveforms. However, in real operations, B and T are unknown; hence, assuming an instantaneous bandwidth estimation will show that the duration T can be estimated only for some specific “tailored” waveforms (of course, not to be operationally used). The effect of “tailoring” is analysed with prospects for future work. Finally, some limitations in the classification of these radar signals are analysed

    Range limitations in microwave quantum radar

    Get PDF
    This work, written for engineers or managers with no special knowledge of quantum mechanics, nor deep experience in radar, aims to help the scientific, industrial, and governmental community to better understand the basic limitations of proposed microwave quantum radar (QR) technologies and systems. Detection and ranging capabilities for QR are critically discussed and a comparison with its closest classical radar (CR), i.e., the noise radar (NR), is presented. In particular, it is investigated whether a future fielded and operating QR system might really outperform an “equivalent” classical radar, or not. The main result of this work, coherently with the recent literature, is that the maximum range of a QR for typical aircraft targets is intrinsically limited to less than one km, and in most cases to some tens of meters. Detailed computations show that the detection performance of all the proposed QR types are orders of magnitude below the ones of any much simpler and cheaper equivalent “classical” radar set, in particular of the noise radar type. These limitations do not apply to very-short-range microwave applications, such as microwave tomography and radar monitoring of heart and breathing activity of people (where other figures, such as cost, size, weight, and power, shall be taken into account). Moreover, quantum sensing at much higher frequencies (optical and beyond) is not considered here

    Waveform Design and Related Processing for Multiple Target Detection and Resolution

    Get PDF
    The performance of modern radar systems mostly depends on the radiated waveforms, whose design is the basis of the entire system design. Today’s coherent, solid-state radars (either of the phased array type or of the single-radiator type as air traffic control or marine radars) transmit a set of deterministic signals with relatively large duty cycles, an order of 10%, calling for pulse compression to get the required range resolution. Often, power budget calls for different pulse lengths (e.g., short, medium, and long waveforms with a rectangular envelope) to cover the whole radar range. The first part of the chapter includes the topic of mitigating the effect of unwanted side lobes, inherent to every pulse compression, which is achieved both by a careful and optimal design of the waveform and by a (possibly mismatched) suitable processing. The second part of the chapter deals with the novel noise radar technology, not yet used in commercial radar sets but promising: (1) to prevent radar interception and exploitation by an enemy part and (2) to limit the mutual interferences of nearby radars, as in the marine environment. In this case, the design includes a tailoring of a set of pseudo-random waveforms, generally by recursive processing, to comply with the system requirements

    ADS-B/MLAT surveillance system from high altitude platform systems

    Get PDF
    In this work the potential usage of ADS-Band Wide Area Multilateration(WAM)Surveillance with High Altitude Platform Systems(HAPS)is considered.The paper investigates the possible configuration ofthesystem,thelinkbudget,thege-ometryandthelimitationduetotherandomaccesstothechannelbytheModeSSignals(capacity).ThesurveillanceperformanceoftheproposedarchitectureinaWideAreaMultilaterationcontextisevaluatedbybothsimulationandstatisticalanalysis(CramerRaoLowerBound)

    Signal design and processing for noise radar

    Get PDF
    An efficient and secure use of the electromagnetic spectrum by different telecommunications and radar systems represents, today, a focal research point, as the coexistence of different radio-frequency sources at the same time and in the same frequency band requires the solution of a non-trivial interference problem. Normally, this is addressed with diversity in frequency, space, time, polarization, or code. In some radar applications, a secure use of the spectrum calls for the design of a set of transmitted waveforms highly resilient to interception and exploitation, i.e., with low probability of intercept/ exploitation capability. In this frame, the noise radar technology (NRT) transmits noise-like waveforms and uses correlation processing of radar echoes for their optimal reception. After a review of the NRT as developed in the last decades, the aim of this paper is to show that NRT can represent a valid solution to the aforesaid problems

    Resting-state connectivity and functional specialization in human medial parieto-occipital cortex

    Get PDF
    According to recent models of visuo-spatial processing, the medial parieto-occipital cortex is a crucial node of the dorsal visual stream. Evidence from neurophysiological studies in monkeys has indicated that the parieto-occipital sulcus (POS) contains three functionally and cytoarchitectonically distinct areas: the visual area V6 in the fundus of the POS, and the visuo-motor areas V6Av and V6Ad in a progressively dorsal and anterior location with respect to V6. Besides different topographical organization, cytoarchitectonics, and functional properties, these three monkey areas can also be distinguished based on their patterns of cortico-cortical connections. Thanks to wide-field retinotopic mapping, areas V6 and V6Av have been also mapped in the human brain. Here, using a combined approach of resting-state functional connectivity and task-evoked activity by fMRI, we identified a new region in the anterior POS showing a pattern of functional properties and cortical connections that suggests a homology with the monkey area V6Ad. In addition, we observed distinct patterns of cortical connections associated with the human V6 and V6Av which are remarkably consistent with those showed by the anatomical tracing studies in the corresponding monkey areas. Consistent with recent models on visuo-spatial processing, our findings demonstrate a gradient of functional specialization and cortical connections within the human POS, with more posterior regions primarily dedicated to the analysis of visual attributes useful for spatial navigation and more anterior regions primarily dedicated to analyses of spatial information relevant for goal-directed action

    Caloric vestibular stimulation reduces pain and somatoparaphrenia in a severe chronic central post-stroke pain patient: a case study

    Get PDF
    Central post-stroke pain is a neuropathic syndrome characterized by intolerable contralesional pain and, in rare cases, somatic delusions. To date, there is limited evidence for the effective treatments of this disease. Here we used caloric vestibular stimulation to reduce pain and somatoparaphrenia in a 57-year-old woman suffering from central post-stroke pain. Resting-state functional magnetic resonance imaging was used to assess the neurological effects of this treatment. Following vestibular stimulation we observed impressive improvements in motor skills, pain, and somatic delusions. In the functional connectivity study before the vestibular stimulation, we observed differences in the patient's left thalamus functional connectivity, with respect to the thalamus connectivity of a control group (N = 20), in the bilateral cingulate cortex and left insula. After the caloric stimulation, the left thalamus functional connectivity with these regions, which are known to be involved in the cortical response to pain, disappeared as in the control group. The beneficial use of vestibular stimulation in the reduction of pain and somatic delusion in a CPSP patient is now documented by behavioral and imaging data. This evidence can be applied to theoretical models of pain and body delusions
    corecore