14 research outputs found

    Serum levels of mature microRNAs in DICER1-mutated pleuropulmonary blastoma.

    Get PDF
    DICER1 is a critical gene in the biogenesis of mature microRNAs, short non-coding RNAs that derive from either -3p or -5p precursor microRNA strands. Germline mutations of DICER1 are associated with a range of human malignancies, including pleuropulmonary blastoma (PPB). Additional somatic 'hotspot' mutations in the microRNA processing ribonuclease IIIb (RNase IIIb) domain of DICER1 are reported in cancer, and which affect microRNA biogenesis, resulting in a -3p mature microRNA strand bias. Here, in a germline (exon11 c.1806_1810insATTGA) DICER1-mutated PPB, we first confirmed the presence of an additional somatic RNase IIIb hotspot mutation (exon25 c.5425G>A [p.G1809R]) by conventional sequencing. Second, we investigated serum levels of mature microRNAs at the time of PPB diagnosis, and compared the findings with serum results from a comprehensive range of pediatric cancer patients and controls (n=52). We identified a panel of 45 microRNAs that were present at elevated levels in the serum at the time of PPB diagnosis, with a significant majority noted be derived from the -3p strand (P=0.013). In addition, we identified a subset of 10 serum microRNAs (namely miR-125a-3p, miR-125b-2-3p, miR-380-5p, miR-125b-1-3p, let-7f-2-3p, let-7a-3p, let-7b-3p, miR-708-3p, miR-138-1-3p and miR-532-3p) that were most abundant in the PPB case. Serum levels of two representative microRNAs, miR-125a-3p and miR-125b-2-3p, were not elevated in DICER1 germline-mutated relatives. In the PPB case, serum levels of miR-125a-3p and miR-125b-2-3p increased before chemotherapy, and then showed an early reduction following treatment. These microRNAs may offer future utility as serum biomarkers for screening patients with known germline DICER1 mutations for early detection of PPB, and for potential disease-monitoring in cases with confirmed PPB.We would like to thank the following for providing financial support: SPARKS (NC, MJM), Medical Research Council Fellowship (MJM), TD Bank/LDI scholarship (LdK), Alex’s Lemonade Stand Foundation (WDF), Cancer Research UK (NC) and European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 310018 (MT).This is the final published version. It first appeared at http://www.nature.com/oncsis/journal/v3/n2/full/oncsis20141a.html

    Tolvaptan use during hyperhydration in paediatric intracranial lymphoma with SIADH

    Get PDF
    An 11-year-old boy developed severe syndrome of inappropriate antidiuretic hormone secretion (SIADH) after diagnosis of an intracranial B-cell lymphoma. His sodium levels dropped to 118-120 mmol/L despite 70% fluid restriction. For chemotherapy, he required hyperhydration, which posed a challenge because of severe hyponatraemia. Tolvaptan is an oral, highly selective arginine vasopressin V2-receptor antagonist, which has been licensed in adults for the management of SIADH and has been used in treating paediatric heart failure. Tolvaptan gradually increased sodium levels and allowed liberalisation of fluid intake and hyperhydration. Tolvaptan had profound effects on urinary output in our patient with increases up to 8 mL/kg/h and required close monitoring of fluid balance, frequent sodium measurements and adjustments to intake. After hyperhydration, tolvaptan was stopped, and the lymphoma went into remission with reversal of SIADH. We report one of the first uses of tolvaptan in a child with SIADH, and it was an effective and safe treatment to manage severe SIADH when fluid restriction was not possible or effective. However, meticulous monitoring of fluid balance and sodium levels and adjustments of fluid intake are required to prevent rapid sodium changes. LEARNING POINTS: Tolvaptan can be used in paediatric patients with SIADH to allow hyperhydration during chemotherapy.Tolvaptan has profound effects on urinary output and meticulous monitoring of fluid balance and sodium levels is therefore warranted.Tolvaptan was well tolerated without significant side effects.This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector

    Sequential inverse dysregulation of the RNA helicases DDX3X and DDX3Y facilitates MYC-driven lymphomagenesis

    Get PDF
    Summary DDX3X is a ubiquitously expressed RNA helicase involved in multiple stages of RNA biogenesis. DDX3X is frequently mutated in Burkitt lymphoma, but the functional basis for this is unknown. Here, we show that loss-of-function DDX3X mutations are also enriched in MYC-translocated diffuse large B cell lymphoma and reveal functional cooperation between mutant DDX3X and MYC. DDX3X promotes the translation of mRNA encoding components of the core translational machinery, thereby driving global protein synthesis. Loss-of-function DDX3X mutations moderate MYC-driven global protein synthesis, thereby buffering MYC-induced proteotoxic stress during early lymphomagenesis. Established lymphoma cells restore full protein synthetic capacity by aberrant expression of DDX3Y, a Y chromosome homolog, the expression of which is normally restricted to the testis. These findings show that DDX3X loss of function can buffer MYC-driven proteotoxic stress and highlight the capacity of male B cell lymphomas to then compensate for this loss by ectopic DDX3Y expression
    corecore