66 research outputs found

    T Cell Integrin Overexpression as a Model of Murine Autoimmunity

    Get PDF
    Integrin adhesion molecules have important adhesion and signaling functions. They also play a central role in the pathogenesis of many autoimmune diseases. Over the past few years we have described a T cell adoptive transfer model to investigate the role of T cell integrin adhesion molecules in the development of autoimmunity. This report summarizes the methods we used in establishing this murine model. By treating murine CD4+ T cells with DNA hypomethylating agents and by transfection we were able to test the in vitro effects of integrin overexpression on T cell autoreactive proliferation, cytotoxicity, adhesion and trafficking. Furthermore, we showed that the ability to induce in vivo autoimmunity may be unique to the integrin lymphocyte function associated antigen-1 (LFA-1)

    The Interaction of LFA-1 on Mononuclear Cells and ICAM-1 on Tubular Epithelial Cells Accelerates TGF-β1-Induced Renal Epithelial-Mesenchymal Transition

    Get PDF
    The epithelial-mesenchymal transition (EMT) of renal epithelial cells (RTECs) has pivotal roles in the development of renal fibrosis. Although the interaction of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes and its ligand, intracellular adhesion molecule 1 (ICAM-1), plays essential roles in most inflammatory reactions, its pathogenetic role in the EMT of RTECs remains to be clarified. In the present study, we investigated the effect of the interaction of LFA-1 on peripheral blood mononuclear cells (PBMCs) and ICAM-1 on HK-2 cells after stimulation with TGF-β1 on the EMT of RTECs. ICAM-1 was highly expressed in HK-2 cells. After TGF-β1 stimulation, the chemokines CCL3 and CXCL12 increased on HK-2 cells. After co-culture of PBMCs and HK-2 cells pre-stimulated with TGF-β1 (0.1 ng/ml) (HK-2-TGF-β1 (0.1)), the expression of the active form of LFA-1 increased on PBMCs; however, total LFA-1 expression did not change. The expression of the active form of LFA-1 on PBMCs did not increase after co-culture with not CCL3 but CXCL12 knockdown HK-2-TGF-β1 (0.1). The expression of epithelial cell junction markers (E-cadherin and occludin) further decreased and that of mesenchymal markers (vimentin and fibronectin) further increased in HK-2-TGF-β1 (0.1) after co-culture with PBMCs for 24 hrs (HK-2-TGF-β1 (0.1)-PBMCs). The phosphorylation of ERK 1/2 but not smad2 and smad3 increased in HK-2-TGF-β1 (0.1)-PBMCs. The snail and slug signaling did not increase HK-2-TGF-β1 (0.1)-PBMCs. Although the migration and invasion of HK-2 cells induced full EMT by a high dose (10.0 ng/ml) and long-term (72–96 hrs) TGF-β1 stimulation increased, that of HK-2-TGF-β1 (0.1)-PBMCs did not increase. These results suggested that HK-2 cells stimulated with TGF-β1 induced conformational activation of LFA-1 on PBMCs by increased CXCL12. Then, the direct interaction of LFA-1 on PBMCs and ICAM-1 on HK-2 cells activated ERK1/2 signaling to accelerate the part of EMT of HK-2 cells induced by TGF-β1

    Long-Term Decrease in VLA-4 Expression and Functional Impairment of Dendritic Cells during Natalizumab Therapy in Patients with Multiple Sclerosis

    Get PDF
    Myeloid and plasmacytoid dendritic cells (mDCs, pDCs) are central to the initiation and the regulation of immune processes in multiple sclerosis (MS). Natalizumab (NTZ) is a humanized monoclonal antibody approved for the treatment of MS that acts by blocking expression of VLA-4 integrins on the surface of leukocytes. We determined the proportions of circulating DC subsets and analyzed expression of VLA-4 expression in 6 relapsing-remitting MS patients treated with NTZ for 1 year. VLA-4 expression levels on pDCs and mDCs decreased significantly during follow-up. In vitro coculture of peripheral blood mononuclear cells and pDCs, with different doses of NTZ in healthy controls (HC) and MS patients showed dose-dependent down-regulation of VLA-4 expression levels in both MS patients and HC, and reduced functional ability to stimulate antigen-specific T-lymphocyte responses. The biological impact of NTZ may in part be attributable to inhibition of transmigration of circulating DCs into the central nervous system, but also to functional impairment of interactions between T cells and DC

    Dcas Supports Cell Polarization and Cell-Cell Adhesion Complexes in Development

    Get PDF
    Mammalian Cas proteins regulate cell migration, division and survival, and are often deregulated in cancer. However, the presence of four paralogous Cas family members in mammals (BCAR1/p130Cas, EFS/Sin1, NEDD9/HEF1/Cas-L, and CASS4/HEPL) has limited their analysis in development. We deleted the single Drosophila Cas gene, Dcas, to probe the developmental function of Dcas. Loss of Dcas had limited effect on embryonal development. However, we found that Dcas is an important modulator of the severity of the developmental phenotypes of mutations affecting integrins (If and mew) and their downstream effectors Fak56D or Src42A. Strikingly, embryonic lethal Fak56D-Dcas double mutant embryos had extensive cell polarity defects, including mislocalization and reduced expression of E-cadherin. Further genetic analysis established that loss of Dcas modified the embryonal lethal phenotypes of embryos with mutations in E-cadherin (Shg) or its signaling partners p120- and β-catenin (Arm). These results support an important role for Cas proteins in cell-cell adhesion signaling in development

    Germinal center dendritic cells express more ICAM-1 than extrafollicular dendritic cells and ICAM-1/LFA-1 interactions are involved in the capacity of dendritic cells to induce PBMCs proliferation

    Full text link
    Germinal center dendritic cells (GCDCs) have been identified as CD11c(+) CD4(+) CD3(-) cells located in GCs with them ability of inducing marked proliferation of allogenic T cells. Using immunofluorescence techniques, we have observed that this CD11c(+) CD4(+) CD3(-) immunophenotype identified GCDCs but also a subset of extrafollicular DCs. By flow cytometry, we were able to discriminate the GCDCs (CD11c(high) CD4(high) lin(-)) from the other tonsil DCs. By immunofluorescence and flow cytometry, we found that dendritic cells of germinal centers express more intracellular adhesion molecule-1 (ICAM-1) (CD54) than extrafollicular dendritic cells. Proliferation of peripheral blood mononuclear cells (PBMCs) induced by coculture with purified CD11c(+) CD4(+) CD3(-) DCs was reduced by addition of blocking anti-CD54 antibodies. In summary, distinct levels of ICAM-1 expression allow the distinction between GCDCs and extrafollicular DCs, and cellular interactions mediated by CD54 are likely to play a role in the capacity of GCDC to stimulate allogenic PBMC proliferation.Peer reviewe
    • …
    corecore