26 research outputs found

    Non-Canonicaly Recruited TCRαβCD8αα IELs Recognize Microbial Antigens

    Get PDF
    In the gut, various subsets of intraepithelial T cells (IELs) respond to self or non-self-antigens derived from the body, diet, commensal and pathogenic microbiota. Dominant subset of IELs in the small intestine are TCRαβCD8αα+ cells, which are derived from immature thymocytes that express self-reactive TCRs. Although most of TCRαβCD8αα+ IELs are thymus-derived, their repertoire adapts to microbial flora. Here, using high throughput TCR sequencing we examined how clonal diversity of TCRαβCD8αα+ IELs changes upon exposure to commensal-derived antigens. We found that fraction of CD8αα+ IELs and CD4+ T cells express identical αβTCRs and this overlap raised parallel to a surge in the diversity of microbial flora. We also found that an opportunistic pathogen (Staphylococcus aureus) isolated from mouse small intestine specifically activated CD8αα+ IELs and CD4+ derived T cell hybridomas suggesting that some of TCRαβCD8αα+ clones with microbial specificities have extrathymic origin. We also report that CD8ααCD4+ IELs and Foxp3CD4+ T cells from the small intestine shared many αβTCRs, regardless whether the later subset was isolated from Foxp3CNS1 sufficient or Foxp3CNS1 deficient mice that lacks peripherally-derived Tregs. Overall, our results imply that repertoire of TCRαβCD8αα+ in small intestine expends in situ in response to changes in microbial flora

    Individual Molecules Dynamics in Reaction Network Models

    No full text
    In a stochastic reaction network setting we consider the problem of tracking the fate of individual molecules. We show that by using the classical large volume limit results, we may approximate the dynamics of a single tracked molecule in a simple and computationally efficient way. We give examples on how this approach may be used to obtain various characteristics of single-molecule dynamics (for instance, the distribution of the number of infections in a single individual in the course of an epidemic or the activity time of a single enzyme molecule). Moreover, we show how to approximate the overall dynamics of species of interest in the full system with a collection of independent single-molecule trajectories, and give explicit bounds for the approximation error in terms of the reaction rates. This approximation, which is well defined for all times, leads to an efficient and fully parallelizable simulation technique for which we provide some numerical examples

    Analyzing allele specific RNA expression using mixture models

    Get PDF
    BACKGROUND: Measuring allele-specific RNA expression provides valuable insights into cis-acting genetic and epigenetic regulation of gene expression. Widespread adoption of high-throughput sequencing technologies for studying RNA expression (RNA-Seq) permits measurement of allelic RNA expression imbalance (AEI) at heterozygous single nucleotide polymorphisms (SNPs) across the entire transcriptome, and this approach has become especially popular with the emergence of large databases, such as GTEx. However, the existing binomial-type methods used to model allelic expression from RNA-seq assume a strong negative correlation between reference and variant allele reads, which may not be reasonable biologically. RESULTS: Here we propose a new strategy for AEI analysis using RNA-seq data. Under the null hypothesis of no AEI, a group of SNPs (possibly across multiple genes) is considered comparable if their respective total sums of the allelic reads are of similar magnitude. Within each group of “comparable” SNPs, we identify SNPs with AEI signal by fitting a mixture of folded Skellam distributions to the absolute values of read differences. By applying this methodology to RNA-Seq data from human autopsy brain tissues, we identified numerous instances of moderate to strong imbalanced allelic RNA expression at heterozygous SNPs. Findings with SLC1A3 mRNA exhibiting known expression differences are discussed as examples. CONCLUSION: The folded Skellam mixture model searches for SNPs with significant difference between reference and variant allele reads (adjusted for different library sizes), using information from a group of “comparable” SNPs across multiple genes. This model is particularly suitable for performing AEI analysis on genes with few heterozygous SNPs available from RNA-seq, and it can fit over-dispersed read counts without specifying the direction of the correlation between reference and variant alleles. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1749-0) contains supplementary material, which is available to authorized users

    RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles

    Get PDF
    BACKGROUND: We used RNA sequencing to analyze transcript profiles of ten autopsy brain regions from ten subjects. RNA sequencing techniques were designed to detect both coding and non-coding RNA, splice isoform composition, and allelic expression. Brain regions were selected from five subjects with a documented history of smoking and five non-smokers. Paired-end RNA sequencing was performed on SOLiD instruments to a depth of >40 million reads, using linearly amplified, ribosomally depleted RNA. Sequencing libraries were prepared with both poly-dT and random hexamer primers to detect all RNA classes, including long non-coding (lncRNA), intronic and intergenic transcripts, and transcripts lacking poly-A tails, providing additional data not previously available. The study was designed to generate a database of the complete transcriptomes in brain region for gene network analyses and discovery of regulatory variants. RESULTS: Of 20,318 protein coding and 18,080 lncRNA genes annotated from GENCODE and lncipedia, 12 thousand protein coding and 2 thousand lncRNA transcripts were detectable at a conservative threshold. Of the aligned reads, 52 % were exonic, 34 % intronic and 14 % intergenic. A majority of protein coding genes (65 %) was expressed in all regions, whereas ncRNAs displayed a more restricted distribution. Profiles of RNA isoforms varied across brain regions and subjects at multiple gene loci, with neurexin 3 (NRXN3) a prominent example. Allelic RNA ratios deviating from unity were identified in > 400 genes, detectable in both protein-coding and non-coding genes, indicating the presence of cis-acting regulatory variants. Mathematical modeling was used to identify RNAs stably expressed in all brain regions (serving as potential markers for normalizing expression levels), linked to basic cellular functions. An initial analysis of differential expression analysis between smokers and nonsmokers implicated a number of genes, several previously associated with nicotine exposure. CONCLUSIONS: RNA sequencing identifies distinct and consistent differences in gene expression between brain regions, with non-coding RNA displaying greater diversity between brain regions than mRNAs. Numerous RNAs exhibit robust allele selective expression, proving a means for discovery of cis-acting regulatory factors with potential clinical relevance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2207-8) contains supplementary material, which is available to authorized users
    corecore