41 research outputs found

    Alu-Alu Recombination Underlying the First Large Genomic Deletion in GlcNAc-Phosphotransferase Alpha/Beta (GNPTAB) Gene in a MLII Alpha/Beta Patient

    Get PDF
    Mucolipidosis type II α/β is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/β subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII α/β patients, but no large deletions have been reported. Here we present the first case of a large homozygous intragenic GNPTAB gene deletion (c.3435-386_3602 + 343del897) encompassing exon 19, identified in a ML II α/β patient. Long-range PCR and sequencing methodologies were used to refine the characterization of this rearrangement, leading to the identification of a 21 bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5' and 3' breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19 (p.Lys1146_Trp1201del); another with an additional loss of exon 20 (p.Arg1145Serfs*2), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18.This represents the first description of a large deletion identified in the GNPTAB gene and contributes to enrich the knowledge on the molecular mechanisms underlying causative mutations in ML II.This work was supported by FCT - project PIC/IC/83252/2007 (http://alfa.fct.mctes.pt/). Coutinho MF and Quental S received grants from the FCT (SFRH/BD/48103/2008; SFRH/BPD/64025/2009)

    Blame, Reputation, and Organizational Responses to a Politicized Climate

    No full text
    Hinterleitner and Sager conceptualize how public sector organizations (PSOs) react to elite polarization, which is as an increasingly common phenomenon in Western democracies. For politicians operating under polarized conditions, PSOs are a primary blame-deflection target. Since blame from politicians presents a threat to the reputation of PSOs, they react to these threats. While research has made progress in examining specific responses to reputational threats, the authors argue that an overarching categorization of responses is missing. The chapter adapts the concept of anticipatory blame avoidance to the decision-making of PSOs, using it as an umbrella concept to categorize and systematize the reactions of PSOs. PSOs that prioritize crafting responses to reputational threats may neglect tasks and duties potentially decisive for effective and problem-oriented public service delivery

    Alu-Alu recombination underlying the first large genomic deletion in GlcNAc-phosphotransferase α/β (GNPTAB) gene in a MLII α/β patient

    Get PDF
    Mucolipidosis type II alpha/beta is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the alpha/beta subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII alpha/beta patients but no large deletions have been reported. Here we present the first case of a large homozygous intragenic GNPTAB gene deletion (c.3435-386­_3602+343del897) encompassing exon 19, identified in a ML II alpha/beta patient. Long range PCR and sequencing methodologies were used to refine the characterization of this rearrangement, leading to the identification of a 21bp repetitive motif in introns 18 and 19. Further analysis revealed that both the 5’ and 3’ breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19 (p.Lys1146_Trp1201del); another with an additional loss of exon 20 (p.Arg1145Serfs*2), and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18 (p.Arg1145Serfs*16). Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18. This represents the first description of a large deletion identified in the GNPTAB gene and contributes to enrich the knowledge on the molecular mechanisms underlying causative mutations in ML II

    Alu-Alu recombination underlying the first large genomic deletion in GlcNAc-phosphotransferase α/β (GNPTAB) gene in a MLII α/β patient [Poster]

    Get PDF
    Mucolipidosis type II α/β is a severe, autosomal recessive lysosomal storage disorder, caused by a defect in the GNPTAB gene that codes for the α/β subunits of the GlcNAc-phosphotransferase. To date, over 100 different mutations have been identified in MLII α/β patients including missense, nonsense, small deletions, small insertions and splice site mutations (Human Gene Mutation Database website [http://www.hgmd.org] and references therein). Large genomic rearrangements were rarely reported (1,6%) with only two large insertions having been described up to now (Tappino et al., 2008; Otomo et al., 2009) but no known large deletions. Results: In this work, through long range PCR and sequencing methodologies we identified a large homozygous intragenic GNPTAB gene deletion, encompassing exon 19, in a ML II α/β patient and refined the characterization of this rearrangement. As a result, it was possible to identify the deletion breakpoints and determine the deletion extension which was 897 bp and included the last 386 nucleotides of intron 18, exon 19, and the first 343 bp of intron 19. A 21bp repetitive motif in introns 18 and 19 was observed at both deletion breakpoints. Further analysis revealed that both the 5’ and 3’ breakpoints were located within highly homologous Alu elements (Alu-Sz in intron 18 and Alu-Sq2, in intron 19), suggesting that this deletion has probably resulted from Alu-Alu unequal homologous recombination. RT-PCR methods were used to further evaluate the consequences of the alteration for the processing of the mutant pre mRNA GNPTAB, revealing the production of three abnormal transcripts: one without exon 19; another with an additional loss of exon 20, and a third in which exon 19 was substituted by a pseudoexon inclusion consisting of a 62 bp fragment from intron 18. Interestingly, this 62 bp fragment corresponds to the Alu-Sz element integrated in intron 18. Conclusion: To the best of our knowledge, this represents the first description of a large deletion identified in the GNPTAB gene. Furthermore, the work adds on the knowledge of the molecular mechanisms underlying causative mutations in ML II and highlights the importance of cDNA analysis on the prediction of the impact of large deletions at protein levels, since a simple gDNA analysis might be misleading

    Histopathological and ultrastructural changes after electroporation in pig liver using parallel-plate electrodes and high-performance generator

    Get PDF
    Irreversible electroporation (IRE) has gained attention as a new non-thermal therapy for ablation with important benefits in terms of homogeneous treatment and fast recovery. In this study, a new concept of high voltage generator is used, enabling irreversible electroporation treatment in large tissue volume using parallel plates. Unlike currently available generators, the proposed versatile structure enables delivering high-voltage high-current pulses. To obtain homogeneous results, 3-cm parallel-plates electrodes have also been designed and implemented. IRE ablation was performed on six female pigs at 2000 V/cm electric field, and the results were analysed after sacrifice three hours, three days and seven days after ablation. Histopathological and ultrastructural studies, including transmission and scanning electron microscopy, were carried out. The developed high-voltage generator has proved to be effective for homogeneous IRE treatment using parallel plates. The destruction of the membrane of the hepatocytes and the alterations of the membranes of the cellular organelles seem incompatible with cell death by apoptosis. Although endothelial cells also die with electroporation, the maintenance of vascular scaffold allows repairing processes to begin from the third day after IRE as long as the blood flow has not been interrupted. This study has opened new direction for IRE using high performance generators and highlighted the importance of taking into account ultrastructural changes after IRE by using electron microscopy analysis.This work was partly supported by the Spanish MINECO under Project TEC2016-78358-R and by the DGA-FSE. Authors would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza

    The Iron Law of Unintended Effects, Again? Outcome Measures and Blame-Avoidance

    No full text
    The shift from output to outcome measures is a recurrent doctrine in public administration studies and practice. However, as with many popular doctrines before, more empirical analysis is still needed. This chapter focuses on the unintended effects of outcome-based performance management and explores how the use of outcome measures influences blame-avoidance strategies by officials and service providers. In looking for answers and using the concept of social mechanism as the analytical lens, this contribution explores a pilot case in the Italian public sector, where a performance ranking composed of outcome measures was introduced as the pivotal performance management tool. Results allow to conceptualize a link between the type of blame-avoidance response and the features of the potential blamers
    corecore