4 research outputs found

    Identification of Trypanosome Proteins in Plasma from African Sleeping Sickness Patients Infected with T. b. rhodesiense

    Get PDF
    Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a ‘deep-mining” proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification

    Serum biochemical parameters and cytokine profiles associated with natural African trypanosome infections in cattle.

    Get PDF
    BACKGROUND: Animal African trypanosomiasis (AAT) greatly affects livestock production in sub-Saharan Africa. In Ghana prevalence of AAT is estimated to range between 5 and 50%. Studies have reported serum biochemical aberrations and variability in cytokine profiles in animals during infection. However, information regarding the biochemical parameters and cytokine profiles associated with natural infections are limited. This study was therefore aimed at investigating changes in the levels of serum biochemical parameters and inflammatory cytokines during a natural infection. METHODS: Nested internal transcribed spacer (ITS)-based PCR and sequencing were used to characterise trypanosome infection in cattle at two areas in Ghana (Adidome and Accra) of different endemicities. The cattle were sampled at four to five-week intervals over a period of six months. Levels of serum biochemical parameters, including creatinine, cholesterol, alkaline phosphatase (ALP), alanine aminotransferase (ALT), total bilirubin and total protein and cytokines (interleukin 10, interleukin 4, interleukin 12, interferon gamma and tumor necrosis factor alpha) were measured in serum samples and then compared between infected cattle and uninfected controls. RESULTS: The predominant trypanosome species detected in Accra (non-endemic) and Adidome (endemic) were Trypanosoma theileri and Trypanosoma vivax, respectively. Serum biochemical parameters were similar between infected and uninfected cattle in Accra. Infected cattle at Adidome however, had significantly higher levels of ALP, creatinine, total protein and total bilirubin (P < 0.05) and significantly lower levels of cholesterol (P < 0.05) at specific time points. At basal levels and during infection, significantly higher pro-inflammatory to anti-inflammatory (Th1/Th2) cytokine ratios were observed in cattle at Adidome compared to Accra (P < 0.05), indicating a shift towards Th1 immune response in Adidome. Levels of IL-10 were, however, significantly elevated in infected cattle in Accra (P < 0.05), suggesting high anti-inflammatory cytokine response in Accra. CONCLUSION: These results suggests that cattle in an endemic area repeatedly infected with trypanosomes of different species or different antigenic types demonstrate high pro-inflammatory (Th1) immune response and biochemical alterations whereas cattle in a non-endemic area with predominantly chronic T. theileri infections demonstrate high anti-inflammatory response and no biochemical alterations

    Inorganic arsenic sorption by drinking-water treatment residual-amended sandy soil: effect of soil solution chemistry

    No full text
    Previous studies in our laboratory have demonstrated that drinking-water treatment residuals are effective sorbents of arsenic V. However, the effect of soil solution chemistry on arsenic V sorption by drinking-water treatment residuals-amended soils remains to be explored. The current study uses a batch incubation experimental set up to evaluate the effect of soil solution pH, competing ligands, and complexing metal on arsenic V sorption by a sandy soil (Immokalee series) amended with two rates (25 and 50 g kg-1) of aluminum and iron-based drinking-water treatment residuals. Experiments were conducted at three initial arsenic loads (125, 1,875, 3,750 mg kg-1) and a constant solid: solution ratio of 200 g L-1. An optimum equilibration time of 8 days, obtained from kinetic studies, was utilized for sorption experiments with both aluminum and iron drinking-water treatment residual-amended soil. Presence of phosphate decreased arsenic V sorption by both aluminum and iron drinking-water treatment residual amended soils, with a strong dependence on pH, drinking-water treatment residual types, drinking-water treatment residual application rates, and phosphate concentrations. Addition of sulfate had no effect on arsenic V sorption by aluminum or iron drinking-water treatment residual-amended soil. A complementing effect of calcium on arsenic V sorption was observed at higher pH. Results elucidating the effect of soil solution chemistry on the arsenic V sorption will be helpful in calibrating drinking-water treatment residual as a sorbent for remediation of arsenic-contaminated soils
    corecore