644 research outputs found
A Systematic Review of How Multiple Stressors From an Extreme Event Drove Ecosystem-Wide Loss of Resilience in an Iconic Seagrass Community
A central question in contemporary ecology is how climate change will alter ecosystem structure and function across scales of space and time. Climate change has been shown to alter ecological patterns from individuals to ecosystems, often with negative implications for ecosystem functions and services. Furthermore, as climate change fuels more frequent and severe extreme climate events (ECEs) like marine heatwaves (MHWs), such acute events become increasingly important drivers of rapid ecosystem change. However, our understanding of ECE impacts is hampered by limited collection of broad scale in situ data where such events occur. In 2011, a MHW known as the Ningaloo Niño bathed the west coast of Australia in waters up to 4°C warmer than normal summer temperatures for almost 2 months over 1000s of kilometers of coastline. We revisit published and unpublished data on the effects of the Ningaloo Niño in the seagrass ecosystem of Shark Bay, Western Australia (24.6–26.6° S), at the transition zone between temperate and tropical seagrasses. Therein we focus on resilience, including resistance to and recovery from disturbance across local, regional and ecosystem-wide spatial scales and over the past 8 years. Thermal effects on temperate seagrass health were severe and exacerbated by simultaneous reduced light conditions associated with sediment inputs from record floods in the south-eastern embayment and from increased detrital loads and sediment destabilization. Initial extensive defoliation of Amphibolis antarctica, the dominant seagrass, was followed by rhizome death that occurred in 60–80% of the bay\u27s meadows, equating to decline of over 1,000 km2 of meadows. This loss, driven by direct abiotic forcing, has persisted, while indirect biotic effects (e.g., dominant seagrass loss) have allowed colonization of some areas by small fast-growing tropical species (e.g., Halodule uninervis). Those biotic effects also impacted multiple consumer populations including turtles and dugongs, with implications for species dynamics, food web structure, and ecosystem recovery. We show multiple stressors can combine to evoke extreme ecological responses by pushing ecosystems beyond their tolerance. Finally, both direct abiotic and indirect biotic effects need to be explicitly considered when attempting to understand and predict how ECEs will alter marine ecosystem dynamics
Upgrading Marine Ecosystem Restoration Using Ecological-Social Concepts
Conservation and environmental management are principal countermeasures to the degradation of marine ecosystems and their services. However, in many cases, current practices are insufficient to reverse ecosystem declines. We suggest that restoration ecology, the science underlying the concepts and tools needed to restore ecosystems, must be recognized as an integral element for marine conservation and environmental management. Marine restoration ecology is a young scientific discipline, often with gaps between its application and the supporting science. Bridging these gaps is essential to using restoration as an effective management tool and reversing the decline of marine ecosystems and their services. Ecological restoration should address objectives that include improved ecosystem services, and it therefore should encompass social ecological elements rather than focusing solely on ecological parameters. We recommend using existing management frameworks to identify clear restoration targets, to apply quantitative tools for assessment, and to make the re-establishment of ecosystem services a criterion for success
A hybrid intelligent agent for notification of users distracted by mobile phones in an urban environment
Mobile devices are now ubiquitous in daily life and the number of activities that can be performed using them
is continually growing. This implies increased attention being placed on the device and diverted away from
events taking place in the surrounding environment. The impact of using a smartphone on pedestrians in the
vicinity of urban traffic has been investigated in a multimodal, fully immersive, virtual reality environment.
Based on experimental data collected, an agent to improve the attention of users in such situations has been
developed. The proposed agent uses explicit, contextual data from experimental conditions to feed a statistical
learning model. The agent’s decision process is aimed at notifying users when they become unaware of critical
events in their surroundings
Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience
© 2017 The Author(s). Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress
Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems?
© Author(s) 2016. The emerging field of blue carbon science is seeking cost-effective ways to estimate the organic carbon content of soils that are bound by coastal vegetated ecosystems. Organic carbon (Corg) content in terrestrial soils and marine sediments has been correlated with mud content (i.e., silt and clay, particle sizes <63μm), however, empirical tests of this theory are lacking for coastal vegetated ecosystems. Here, we compiled data (n Combining double low line 1345) on the relationship between Corg and mud contents in seagrass ecosystems (79 cores) and adjacent bare sediments (21 cores) to address whether mud can be used to predict soil Corg content. We also combined these data with the ?13C signatures of the soil Corg to understand the sources of Corg stores. The results showed that mud is positively correlated with soil Corg content only when the contribution of seagrass-derived Corg to the sedimentary Corg pool is relatively low, such as in small and fast-growing meadows of the genera Zostera, Halodule and Halophila, and in bare sediments adjacent to seagrass ecosystems. In large and long-living seagrass meadows of the genera Posidonia and Amphibolis there was a lack of, or poor relationship between mud and soil Corg content, related to a higher contribution of seagrass-derived Corg to the sedimentary Corg pool in these meadows. The relatively high soil Corg contents with relatively low mud contents (e.g., mud-Corg saturation) in bare sediments and Zostera, Halodule and Halophila meadows was related to significant allochthonous inputs of terrestrial organic matter, while higher contribution of seagrass detritus in Amphibolis and Posidonia meadows disrupted the correlation expected between soil Corg and mud contents. This study shows that mud is not a universal proxy for blue carbon content in seagrass ecosystems, and therefore should not be applied generally across all seagrass habitats. Mud content can only be used as a proxy to estimate soil Corg content for scaling up purposes when opportunistic and/or low biomass seagrass species (i.e., Zostera, Halodule and Halophila) are present (explaining 34 to 91% of variability), and in bare sediments (explaining 78% of the variability). The results obtained could enable robust scaling up exercises at a low cost as part of blue carbon stock assessments
Factors affecting the mesothelioma detection rate within national and international epidemiological studies: insights from Scottish linked cancer registry-mortality data
ICD-9 code 163 (malignant neoplasm of pleura) listed as underlying cause of death detected only 40% of Scottish mesothelioma cases (all body sites) from the cancer registry in 1981–1999. This is lower than both the previously published 55% figure, derived from UK mesothelioma register data 1986–1991, which is based on any mention of mesothelioma on death certificates, cross-referenced to cancer registry data, and the 44% figure derived from Scottish mortality data 1981–1999, which captured any mention of mesothelioma on the death certificate. Detection from cancer registry data increased to 75% under ICD-10 in Scotland, confirming earlier predictions of the benefit of ICD-10's more specific mesothelioma codes. Including the accidental poisoning codes E866.4 (ICD-9) and X49 (ICD-10), covering poisoning by ‘unspecified' and ‘other' causes, which appear to have been used as coding surrogates for mesothelioma when asbestos exposure was explicitly mentioned in deaths suggestive of a mesothelioma, and which are recorded as the underlying cause of death in 4–7% of mesotheliomas, may improve the mesothelioma detection rate in future epidemiological studies
A computational study on altered theta-gamma coupling during learning and phase coding
There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus
The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri).
Seagrasses are marine angiosperms that evolved from land plants but returned to the sea around 140 million years ago during the early evolution of monocotyledonous plants. They successfully adapted to abiotic stresses associated with growth in the marine environment, and today, seagrasses are distributed in coastal waters worldwide. Seagrass meadows are an important oceanic carbon sink and provide food and breeding grounds for diverse marine species. Here, we report the assembly and characterization of the Zostera muelleri genome, a southern hemisphere temperate species. Multiple genes were lost or modified in Z. muelleri compared with terrestrial or floating aquatic plants that are associated with their adaptation to life in the ocean. These include genes for hormone biosynthesis and signaling and cell wall catabolism. There is evidence of whole-genome duplication in Z. muelleri; however, an ancient pan-commelinid duplication event is absent, highlighting the early divergence of this species from the main monocot lineages
- …