881 research outputs found

    The effects of the underground economy on economic competitiviness

    Get PDF
    A real, almost palpable, connection exists between the official and the underground economy. More than that, both sides of the economy (official and underground) are connected with the competitiveness of a country. Strangely a large presence of undereground in the economy is a sign of competitiveness. Although we would be tempted to say that underground is bad for competitiveness the reality is that due to taxes and regulations the resources (especially the human ones) used ”illegaly” would probably be wasted. In the end the wages from the underground economy return to the oficial one suporting it and hence the competitiveness of the country.official economy; underground economy; illegal activities; tax evasion; economic competitiveness

    The effects of the underground economy on economic competitiviness

    Get PDF
    A real, almost palpable, connection exists between the official and the underground economy. More than that, both sides of the economy (official and underground) are connected with the competitiveness of a country. Strangely a large presence of undereground in the economy is a sign of competitiveness. Although we would be tempted to say that underground is bad for competitiveness the reality is that due to taxes and regulations the resources (especially the human ones) used ”illegaly” would probably be wasted. In the end the wages from the underground economy return to the oficial one suporting it and hence the competitiveness of the country

    Systems of subspaces of a unitary space

    Full text link
    For a given poset, we consider its representations by systems of subspaces of a unitary space ordered by inclusion. We classify such systems for all posets for which an explicit classification is possible.Comment: 20 page

    Quantum Holographic Encoding in a Two-dimensional Electron Gas

    Full text link
    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures--"molecular holograms"--which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as ~0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm2 and place tens of bits into a single fermionic state.Comment: Published online 25 January 2009 in Nature Nanotechnology; 12 page manuscript (including 4 figures) + 2 page supplement (including 1 figure); supplementary movie available at http://mota.stanford.ed

    Single nucleotide polymorphisms and breast cancer: not yet a success story

    Get PDF
    Numerous studies have examined low penetrance susceptibility polymorphisms in candidate genes, with some reporting significant findings. However, for the most part these associations could not be replicated in subsequent studies, suggesting that the original observations were due to chance. The failure to identify meaningful common genetic variation in relation to breast cancer should give us pause for thought and make us reconsider our current research strategies. The most recent directions of pooling samples to increase statistical power and pursuing whole genome screens may overcome some obstacles while also creating new challenges. Future studies should perhaps also consider alternative designs such as using surrogate (preferably continuous) markers of breast cancer, focusing on high-risk populations, and defining pathologically distinct outcomes

    Single nucleotide polymorphisms and breast cancer: not yet a success story

    Get PDF
    Numerous studies have examined low penetrance susceptibility polymorphisms in candidate genes, with some reporting significant findings. However, for the most part these associations could not be replicated in subsequent studies, suggesting that the original observations were due to chance. The failure to identify meaningful common genetic variation in relation to breast cancer should give us pause for thought and make us reconsider our current research strategies. The most recent directions of pooling samples to increase statistical power and pursuing whole genome screens may overcome some obstacles while also creating new challenges. Future studies should perhaps also consider alternative designs such as using surrogate (preferably continuous) markers of breast cancer, focusing on high-risk populations, and defining pathologically distinct outcomes

    LEMUR: Large European Module for solar Ultraviolet Research. European contribution to JAXA's Solar-C mission

    Get PDF
    Understanding the solar outer atmosphere requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1" and 0.3"), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 17 and 127 nm. The LEMUR slit covers 280" on the Sun with 0.14" per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km/s or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.Comment: 35 pages, 14 figures. To appear on Experimental Astronom
    corecore