98 research outputs found

    Radiomic signatures of posterior fossa ependymoma: Molecular subgroups and risk profiles

    Get PDF
    BACKGROUND: The risk profile for posterior fossa ependymoma (EP) depends on surgical and molecular status [Group A (PFA) versus Group B (PFB)]. While subtotal tumor resection is known to confer worse prognosis, MRI-based EP risk-profiling is unexplored. We aimed to apply machine learning strategies to link MRI-based biomarkers of high-risk EP and also to distinguish PFA from PFB. METHODS: We extracted 1800 quantitative features from presurgical T2-weighted (T2-MRI) and gadolinium-enhanced T1-weighted (T1-MRI) imaging of 157 EP patients. We implemented nested cross-validation to identify features for risk score calculations and apply a Cox model for survival analysis. We conducted additional feature selection for PFA versus PFB and examined performance across three candidate classifiers. RESULTS: For all EP patients with GTR, we identified four T2-MRI-based features and stratified patients into high- and low-risk groups, with 5-year overall survival rates of 62% and 100%, respectively (p < 0.0001). Among presumed PFA patients with GTR, four T1-MRI and five T2-MRI features predicted divergence of high- and low-risk groups, with 5-year overall survival rates of 62.7% and 96.7%, respectively (p = 0.002). T1-MRI-based features showed the best performance distinguishing PFA from PFB with an AUC of 0.86. CONCLUSIONS: We present machine learning strategies to identify MRI phenotypes that distinguish PFA from PFB, as well as high- and low-risk PFA. We also describe quantitative image predictors of aggressive EP tumors that might assist risk-profiling after surgery. Future studies could examine translating radiomics as an adjunct to EP risk assessment when considering therapy strategies or trial candidacy

    New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children

    Get PDF
    Hyponatremia is the most common electrolyte abnormality encountered in children. In the past decade, new advances have been made in understanding the pathogenesis of hyponatremic encephalopathy and in its prevention and treatment. Recent data have determined that hyponatremia is a more serious condition than previously believed. It is a major comorbidity factor for a variety of illnesses, and subtle neurological findings are common. It has now become apparent that the majority of hospital-acquired hyponatremia in children is iatrogenic and due in large part to the administration of hypotonic fluids to patients with elevated arginine vasopressin levels. Recent prospective studies have demonstrated that administration of 0.9% sodium chloride in maintenance fluids can prevent the development of hyponatremia. Risk factors, such as hypoxia and central nervous system (CNS) involvement, have been identified for the development of hyponatremic encephalopathy, which can lead to neurologic injury at mildly hyponatremic values. It has also become apparent that both children and adult patients are dying from symptomatic hyponatremia due to inadequate therapy. We have proposed the use of intermittent intravenous bolus therapy with 3% sodium chloride, 2 cc/kg with a maximum of 100 cc, to rapidly reverse CNS symptoms and at the same time avoid the possibility of overcorrection of hyponatremia. In this review, we discuss how to recognize patients at risk for inadvertent overcorrection of hyponatremia and what measures should taken to prevent this, including the judicious use of 1-desamino-8d-arginine vasopressin (dDAVP)

    Surface Chemistry

    No full text

    More than speed

    No full text

    Coupling between adjacent crystal planes in heterogeneous catalysis by propagating reaction–diffusion waves

    No full text
    UNDERSTANDING of the mechanisms and kinetics of heterogeneous catalytic reactions has come largely from the study of gas–solid interactions on well defined single-crystal surfaces1,2. But real catalysts usually consist of nanometre-sized particles on which several different crystal planes are exposed. In general, it has been assumed that their properties can be regarded as a superposition of the contributions from each individual structural element. Here we show that this assumption may be invalid, even qualitatively, in certain cases. We have studied the oxidation of hydrogen on platinum surfaces at low pressure and room temperature. On a macroscopic Pt(lOO) single crystal the reaction reaches a steady state with a uniform distribution of adsorbates. But on the platinum tip of a field ion microscope, on which several different crystal planes are exposed, the reaction has a very different character. The tip contains a region of the (100) plane just 40 nm in diameter, on which the reaction rate displays sustained temporal oscillations. This effect is associated with continuously changing distributions of the adsorbed species in the form of propagating waves, which are generated by coupling of reactions occurring on adjacent crystal planes. This kind of interaction between different crystal planes may exert a profound influence on the kinetics of heterogeneous catalysis
    • …
    corecore