285 research outputs found

    Universality in Systems with Power-Law Memory and Fractional Dynamics

    Full text link
    There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as "universality", can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201

    Glucocorticoids with different chemical structures but similar glucocorticoid receptor potency regulate subsets of common and unique genes in human trabecular meshwork cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In addition to their well-documented ocular therapeutic effects, glucocorticoids (GCs) can cause sight-threatening side-effects including ocular hypertension presumably via morphological and biochemical changes in trabecular meshwork (TM) cells. In the present study, we directly compared the glucocorticoid receptor (GR) potency for dexamethasone (DEX), fluocinolone acetonide (FA) and triamcinolone acetonide (TA), examined the expression of known GRα and GRβ isoforms, and used gene expression microarrays to compare the effects of DEX, FA, and TA on the complete transcriptome in two primary human TM cell lines.</p> <p>Methods</p> <p>GR binding affinity for DEX, FA, and TA was measured by a cell-free competitive radio-labeled GR binding assay. GR-mediated transcriptional activity was assessed using the GeneBLAzer beta-lactamase reporter gene assay. Levels of GRα and GRβ isoforms were assessed by Western blot. Total RNA was extracted from TM 86 and TM 93 cells treated with 1 μM DEX, FA, or TA for 24 hr and used for microarray gene expression analysis. The microarray experiments were repeated three times. Differentially expressed genes were identified by Rosetta Resolver Gene Expression Analysis System.</p> <p>Results</p> <p>The GR binding affinity (IC<sub>50</sub>) for DEX, FA, and TA was 5.4, 2.0, and 1.5 nM, respectively. These values are similar to the GR transactivation EC<sub>50 </sub>of 3.0, 0.7, and 1.5 nM for DEX, FA, and TA, respectively. All four GRα translational isoforms (A-D) were expressed in TM 86 and TM 93 total cell lysates, however, the C and D isoforms were more highly expressed relative to A and B. All four GRβ isoforms (A-D) were also detected in TM cells, although GRβ-D isoform expression was lower compared to that of the A, B, or C isoforms. Microarray analysis revealed 1,968 and 1,150 genes commonly regulated by DEX, FA, and TA in TM 86 and TM 93, respectively. These genes included RGC32, OCA2, ANGPTL7, MYOC, FKBP5, SAA1 and ZBTB16. In addition, each GC specifically regulated a unique set of genes in both TM cell lines. Using Ingenuity Pathway Analysis (IPA) software, analysis of the data from TM 86 cells showed that DEX significantly regulated transcripts associated with RNA post-transcriptional modifications, whereas FA and TA modulated genes involved in lipid metabolism and cell morphology, respectively. In TM 93 cells, DEX significantly regulated genes implicated in histone methylation, whereas FA and TA altered genes associated with cell cycle and cell adhesion, respectively.</p> <p>Conclusion</p> <p>Human trabecular meshwork cells in culture express all known GRα and GRβ translational isoforms, and GCs with similar potency but subtly different chemical structure are capable of regulating common and unique gene subsets and presumably biologic responses in these cells. These GC structure-dependent effects appear to be TM cell-lineage dependent.</p

    Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lectins are mainly described as simple carbohydrate-binding proteins. Previous studies have tried to identify other binding sites, which possible recognize plant hormones, secondary metabolites, and isolated amino acid residues. We report the crystal structure of a lectin isolated from <it>Canavalia gladiata </it>seeds (CGL), describing a new binding pocket, which may be related to pathogen resistance activity in ConA-like lectins; a site where a non-protein amino-acid, α-aminobutyric acid (Abu), is bound.</p> <p>Results</p> <p>The overall structure of native CGL and complexed with α-methyl-mannoside and Abu have been refined at 2.3 Å and 2.31 Å resolution, respectively. Analysis of the electron density maps of the CGL structure shows clearly the presence of Abu, which was confirmed by mass spectrometry.</p> <p>Conclusion</p> <p>The presence of Abu in a plant lectin structure strongly indicates the ability of lectins on carrying secondary metabolites. Comparison of the amino acids composing the site with other legume lectins revealed that this site is conserved, providing an evidence of the biological relevance of this site. This new action of lectins strengthens their role in defense mechanisms in plants.</p

    Spike-Timing Theory of Working Memory

    Get PDF
    Working memory (WM) is the part of the brain's memory system that provides temporary storage and manipulation of information necessary for cognition. Although WM has limited capacity at any given time, it has vast memory content in the sense that it acts on the brain's nearly infinite repertoire of lifetime long-term memories. Using simulations, we show that large memory content and WM functionality emerge spontaneously if we take the spike-timing nature of neuronal processing into account. Here, memories are represented by extensively overlapping groups of neurons that exhibit stereotypical time-locked spatiotemporal spike-timing patterns, called polychronous patterns; and synapses forming such polychronous neuronal groups (PNGs) are subject to associative synaptic plasticity in the form of both long-term and short-term spike-timing dependent plasticity. While long-term potentiation is essential in PNG formation, we show how short-term plasticity can temporarily strengthen the synapses of selected PNGs and lead to an increase in the spontaneous reactivation rate of these PNGs. This increased reactivation rate, consistent with in vivo recordings during WM tasks, results in high interspike interval variability and irregular, yet systematically changing, elevated firing rate profiles within the neurons of the selected PNGs. Additionally, our theory explains the relationship between such slowly changing firing rates and precisely timed spikes, and it reveals a novel relationship between WM and the perception of time on the order of seconds

    The Homeobox Transcription Factor Barx2 Regulates Plasticity of Young Primary Myofibers

    Get PDF
    Adult mammalian muscle retains incredible plasticity. Muscle growth and repair involves the activation of undifferentiated myogenic precursors called satellite cells. In some circumstances, it has been proposed that existing myofibers may also cleave and produce a pool of proliferative cells that can re-differentiate into new fibers. Such myofiber dedifferentiation has been observed in the salamander blastema where it may occur in parallel with satellite cell activation. Moreover, ectopic expression of the homeodomain transcription factor Msx1 in differentiated C2C12 myotubes has been shown to induce their dedifferentiation. While it remains unclear whether dedifferentiation and redifferentiaton occurs endogenously in mammalian muscle, there is considerable interest in induced dedifferentiation as a possible regenerative tool.We previously showed that the homeobox protein Barx2 promotes myoblast differentiation. Here we report that ectopic expression of Barx2 in young immature myotubes derived from cell lines and primary mouse myoblasts, caused cleavage of the syncytium and downregulation of differentiation markers. Microinjection of Barx2 cDNA into immature myotubes derived from primary cells led to cleavage and formation of mononucleated cells that were able to proliferate. However, injection of Barx2 cDNA into mature myotubes did not cause cleavage. Barx2 expression in C2C12 myotubes increased the expression of cyclin D1, which may promote cell cycle re-entry. We also observed differential muscle gene regulation by Barx2 at early and late stages of muscle differentiation which may be due to differential recruitment of transcriptional activator or repressor complexes to muscle specific genes by Barx2.We show that Barx2 regulates plasticity of immature myofibers and might act as a molecular switch controlling cell differentiation and proliferation

    Redundancy and the Evolution of Cis-Regulatory Element Multiplicity

    Get PDF
    The promoter regions of many genes contain multiple binding sites for the same transcription factor (TF). One possibility is that this multiplicity evolved through transitional forms showing redundant cis-regulation. To evaluate this hypothesis, we must disentangle the relative contributions of different evolutionary mechanisms to the evolution of binding site multiplicity. Here, we attempt to do this using a model of binding site evolution. Our model considers binding sequences and their interactions with TFs explicitly, and allows us to cast the evolution of gene networks into a neutral network framework. We then test some of the model's predictions using data from yeast. Analysis of the model suggested three candidate nonadaptive processes favoring the evolution of cis-regulatory element redundancy and multiplicity: neutral evolution in long promoters, recombination and TF promiscuity. We find that recombination rate is positively associated with binding site multiplicity in yeast. Our model also indicated that weak direct selection for multiplicity (partial redundancy) can play a major role in organisms with large populations. Our data suggest that selection for changes in gene expression level may have contributed to the evolution of multiple binding sites in yeast. We conclude that the evolution of cis-regulatory element redundancy and multiplicity is impacted by many aspects of the biology of an organism: both adaptive and nonadaptive processes, both changes in cis to binding sites and in trans to the TFs that interact with them, both the functional setting of the promoter and the population genetic context of the individuals carrying them

    Toward visualization of nanomachines in their native cellular environment

    Get PDF
    The cellular nanocosm is made up of numerous types of macromolecular complexes or biological nanomachines. These form functional modules that are organized into complex subcellular networks. Information on the ultra-structure of these nanomachines has mainly been obtained by analyzing isolated structures, using imaging techniques such as X-ray crystallography, NMR, or single particle electron microscopy (EM). Yet there is a strong need to image biological complexes in a native state and within a cellular environment, in order to gain a better understanding of their functions. Emerging methods in EM are now making this goal reachable. Cryo-electron tomography bypasses the need for conventional fixatives, dehydration and stains, so that a close-to-native environment is retained. As this technique is approaching macromolecular resolution, it is possible to create maps of individual macromolecular complexes. X-ray and NMR data can be ‘docked’ or fitted into the lower resolution particle density maps to create a macromolecular atlas of the cell under normal and pathological conditions. The majority of cells, however, are too thick to be imaged in an intact state and therefore methods such as ‘high pressure freezing’ with ‘freeze-substitution followed by room temperature plastic sectioning’ or ‘cryo-sectioning of unperturbed vitreous fully hydrated samples’ have been introduced for electron tomography. Here, we review methodological considerations for visualizing nanomachines in a close-to-physiological, cellular context. EM is in a renaissance, and further innovations and training in this field should be fully supported

    Fructan and its relationship to abiotic stress tolerance in plants

    Get PDF
    Numerous studies have been published that attempted to correlate fructan concentrations with freezing and drought tolerance. Studies investigating the effect of fructan on liposomes indicated that a direct interaction between membranes and fructan was possible. This new area of research began to move fructan and its association with stress beyond mere correlation by confirming that fructan has the capacity to stabilize membranes during drying by inserting at least part of the polysaccharide into the lipid headgroup region of the membrane. This helps prevent leakage when water is removed from the system either during freezing or drought. When plants were transformed with the ability to synthesize fructan, a concomitant increase in drought and/or freezing tolerance was confirmed. These experiments indicate that besides an indirect effect of supplying tissues with hexose sugars, fructan has a direct protective effect that can be demonstrated by both model systems and genetic transformation
    corecore