20 research outputs found

    The effect of gamma irradiation on selected growth factors and receptors mRNA in glycerol cryopreserved human amniotic membrane

    Get PDF
    Human amniotic membrane (HAM), due to its high biocompatibility, low immunogenicity, anti-microbial, anti-viral properties as well as the presence of its growth factors, has been used in various clinical applications. These growth factors are key factors in regulating many cellular processes such as cellular growth, proliferation and cellular differentiation. The current study aimed to explore the effect of glycerol cryopreservation and gamma irradiation on the selected growth factors and receptors mRNA present in HAM. Eight growth factors, namely, EGF, HGF, KGF, TGF-α, TGF-β1, TGF-β2, TGF-β3 and bFGF and two growth factor receptors, HGFR and KGFR were evaluated in this study. The total RNA was extracted and converted to complimentary DNA using commercial kits. Subsequently, the mRNA expressions of these growth factors were evaluated using quantitative PCR and the results were statistically analyzed using REST-MCS software. This study indicated the presence of these growth factors and receptors mRNA in fresh, glycerol cryopreserved and irradiated glycerol cryopreserved HAM. In glycerol cryopreserved HAM, the mRNA expression showed up-regulation of HGF and bFGF and down-regulation of the rest of 8 genes which were EGF, HGFR, KGF, KGFR, TGF-α, TGF-β1, TGF-β2 and TGF-β3. Interestingly, the glycerol cryopreserved HAM radiated with 15 kGy showed up-regulation in the mRNA expression of 7 genes, namely, EGF, HGF, KGF, KGFR, TGF-β1, TGF-β2 and TGF-β3 and down-regulated mRNA expression of HGFR, TGF-α and bFGF. However, these mRNA expressions did not show a statistically significant difference compared to control groups. Thus, it can be concluded that the glycerol cryopreservation did not have an effect on the growth factors’ and receptors’ mRNA expression levels in HAM. Similarly, 15 kGy gamma irradiation did not have an effect on the growth factors’ and receptors’ mRNA expression in glycerol cryopreserved HAM. This finding provides a useful information to clinicians and surgeons to choose the best method for HAM preservation that could benefit patients in their treatment

    Phylogenomic analysis of a 55.1 kb 19-gene dataset resolves a monophyletic Fusarium that includes the Fusarium solani Species Complex

    Get PDF
    Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user¿s needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option availabl

    No to Neocosmospora: Phylogenomic and Practical Reasons for Continued Inclusion of the Fusarium solani Species Complex in the Genus Fusarium

    No full text
    Contains fulltext : 225984.pdf (publisher's version ) (Open Access)This article is to alert medical mycologists and infectious disease specialists of recent name changes of medically important species of the filamentous mold Fusarium Fusarium species can cause localized and life-threating infections in humans. Of the 70 Fusarium species that have been reported to cause infections, close to one-third are members of the Fusarium solani species complex (FSSC), and they collectively account for approximately two-thirds of all reported Fusarium infections. Many of these species were recently given scientific names for the first time by a research group in the Netherlands, but they were misplaced in the genus Neocosmospora In this paper, we present genetic arguments that strongly support inclusion of the FSSC in Fusarium There are potentially serious consequences associated with using the name Neocosmospora for Fusarium species because clinicians need to be aware that fusaria are broadly resistant to the spectrum of antifungals that are currently available
    corecore