390 research outputs found
Quantum correlations in position, momentum, and intermediate bases for a full optical field of view
We report an eight-element, linear-array, single-photon detector that uses multiple fibers of differing lengths coupled to a single detector, the timing information from which reveals the position in which the photon was measured. Using two such arrays and two detectors we measure the correlations of photons produced by parametric downconversion, without recourse to mechanical scanning. Spatial light modulators acting as variable focal length lenses positioned between the downconversion crystal and the arrays allow us to switch between measurement of position, transverse momentum, or intermediate bases. We observe the product of the variances of the conditional probabilities for position and momentum to be more than an order of magnitude below the classical limit, realizing a full-field demonstration of the Einstein-Podolsky-Rosen paradox. Such, multistate measurement technologies allow access to the higher information content of the photon based upon spatial modes
Conditional beam splitting attack on quantum key distribution
We present a novel attack on quantum key distribution based on the idea of
adaptive absorption [calsam01]. The conditional beam splitting attack is shown
to be much more efficient than the conventional beam spitting attack, achieving
a performance similar to the, powerful but currently unfeasible, photon number
splitting attack. The implementation of the conditional beam splitting attack,
based solely on linear optical elements, is well within reach of current
technology.Comment: Submitted to Phys. Rev.
Synchronized pulse control of decoherence
We present a new strategy for multipulse control over decoherence. When a
two-level system interacts with a reservoir characterized by a specific
frequency, we find that the decoherence is effectively suppressed by
synchronizing the pulse-train application with the dynamical motion of the
reservoir.Comment: 14 pages, 8 figure
Scalar Glueball Decay Into Pions In Effective Theory
We discuss the mixing between the sigma meson sigma and the "pure" glueball
field H and study the decays of the scalar glueball candidates f_0(1370),
f_0(1500) and f_0(1710) (a linear combination of sigma and H) into two pions in
an effective linear sigma model.Comment: 10 pages and 3 figures (an extended version of hep-ph/9805412), to
appear in Phys. Rev.
Proposal of an experimental scheme for realising a translucent eavesdropping on a quantum cryptographic channel
Purpose of this paper is to suggest a scheme, which can be realised with
today's technology and could be used for entangling a probe to a photon qubit
based on polarisation. Using this probe a translucent or a coherent
eavesdropping can be performed.Comment: in pres
Global Standards in Action: Insights from Anti-Money Laundering Regulation
As organizations have come under the increasing influence of global rules of all sorts, organization scholars have started studying the dynamics of global regulation. The purpose of this article is to identify and evaluate the contribution to this interdisciplinary field by the âStockholm Centre for Organisational Researchâ. The latterâs key proposition is that while global regulation often consists of voluntary best practice rules it can nevertheless become highly influential under certain conditions. We assess how innovative this approach is using as a benchmark the state of the art in another field of relevance to the study of global regulation, i.e. âInternational Relationsâ. Our discussion is primarily theoretical but we draw on the case of global anti-money laundering regulation to illustrate our arguments and for inspirations of how to further elaborate the approach
Screening of qubit from zero-temperature reservoir
We suggest an application of dynamical Zeno effect to isolate a qubit in the
quantum memory unit against decoherence caused by coupling with the reservoir
having zero temperature. The method is based on using an auxiliary casing
system that mediate the qubit-reservoir interaction and is simultaneously
frequently erased to ground state. This screening procedure can be implemented
in the cavity QED experiments to store the atomic and photonic qubit states.Comment: 4 pages, 5 figure
Entanglement and purity of two-mode Gaussian states in noisy channels
We study the evolution of purity, entanglement and total correlations of
general two--mode Gaussian states of continuous variable systems in arbitrary
uncorrelated Gaussian environments. The time evolution of purity, Von Neumann
entropy, logarithmic negativity and mutual information is analyzed for a wide
range of initial conditions. In general, we find that a local squeezing of the
bath leads to a faster degradation of purity and entanglement, while it can
help to preserve the mutual information between the modes.Comment: 10 pages, 8 figure
Dynamical aspects of quantum entanglement for weakly coupled kicked tops
We investigate how the dynamical production of quantum entanglement for
weakly coupled, composite quantum systems is influenced by the chaotic dynamics
of the corresponding classical system, using coupled kicked tops. The linear
entropy for the subsystem (a kicked top) is employed as a measure of
entanglement. A perturbative formula for the entanglement production rate is
derived. The formula contains a correlation function that can be evaluated only
from the information of uncoupled tops. Using this expression and the
assumption that the correlation function decays exponentially which is
plausible for chaotic tops, it is shown that {\it the increment of the strength
of chaos does not enhance the production rate of entanglement} when the
coupling is weak enough and the subsystems (kicked tops) are strongly chaotic.
The result is confirmed by numerical experiments. The perturbative approach is
also applied to a weakly chaotic region, where tori and chaotic sea coexist in
the corresponding classical phase space, to reexamine a recent numerical study
that suggests an intimate relationship between the linear stability of the
corresponding classical trajectory and the entanglement production rate.Comment: 16 pages, 11 figures, submitted to Phys. Rev.
Exact Diagonalization of Two Quantum Models for the Damped Harmonic Oscillator
The damped harmonic oscillator is a workhorse for the study of dissipation in
quantum mechanics. However, despite its simplicity, this system has given rise
to some approximations whose validity and relation to more refined descriptions
deserve a thorough investigation. In this work, we apply a method that allows
us to diagonalize exactly the dissipative Hamiltonians that are frequently
adopted in the literature. Using this method we derive the conditions of
validity of the rotating-wave approximation (RWA) and show how this approximate
description relates to more general ones. We also show that the existence of
dissipative coherent states is intimately related to the RWA. Finally, through
the evaluation of the dynamics of the damped oscillator, we notice an important
property of the dissipative model that has not been properly accounted for in
previous works; namely, the necessity of new constraints to the application of
the factorizable initial conditions.Comment: 19 pages, 2 figures, ReVTe
- âŠ