2,930 research outputs found

    A novel nonlinear approach to suppress resonant vibrations

    Get PDF
    A novel approach to suppress resonant vibration is presented by employing a single degree of freedom transmissibility system which utilizes a nonlinear damping element. Studies have shown that the nonlinear damping element can reduce the output energy at the driving frequency and at the same time spread the output signal energy over a wider range of harmonics. It will also be shown that the reduction becomes larger as the nonlinear damping characteristic gets stronger and in most cases, the power at the harmonics in the output spectrum will be much less if the nonlinear damping characteristic is an odd function. Hence, an odd polynomial nonlinear damping element can be introduced between the incoming signal and the structure of interest to suppress resonant vibration. An expression is derived to express the transmitted force spectrum in terms of the nonlinear generalized frequency response functions, to clearly show how the energy, at the excitation frequency, is modified by the nonlinearity

    Suppressing resonant vibrations using nonlinear springs and dampers

    Get PDF
    The energy entering the resonant region of a system can be significantly reduced by introducing designed nonlinearities into the system. The basic choice of the nonlinearity can be either a nonlinear spring element or a nonlinear damping element. A numerical algorithm to compute and compare the energy reduction produced by these two types of designed elements is proposed in this study. Analytical results are used to demonstrate the procedure. The numerical results indicate that the designed nonlinear damping element produces low levels of energy at the higher order harmonics and no bifurcations in the system output response. In contrast the nonlinear spring based designs induce significant energy at the harmonics and can produce bifurcation behaviour. The conclusions provide an important basis for the design of nonlinear materials and nonlinear engineering systems

    Model structure detection and system identification of metal rubber devices

    Get PDF
    Metal rubber (MR) devices, a new wire mesh material, have been extensively used in recent years due to several unique properties especially in adverse environments. Although many practical studies have been completed, the related theoretical research on metal rubber is still in its infancy. In this paper, a semi-constitutive dynamic model that involves nonlinear elastic stiffness, nonlinear viscous damping and bilinear hysteresis Coulomb damping is adopted to model MR devices. After approximating the bilinear hysteresis damping using Chebyshev polynomials of the first kind, a very efficient procedure based on the orthogonal least squares (OLS) algorithm and the adjustable prediction error sum of squares (APRESS) criterion is proposed for model structure detection and parameter estimation of an MR device for the first time. The OLS algorithm provides a powerful tool to effectively select the significant model terms step by step, one at a time, by orthogonalizing the associated terms and maximizing the error reduction ratio, in a forward stepwise procedure. The APRESS statistic regularizes the OLS algorithm to facilitate the determination of the optimal number of model terms that should be included into the dynamic model. Because of the orthogonal property of the OLS algorithm, the approach leads to a parsimonious model. Numerical ill-conditioning problems confronted by the conventional least squares algorithm can also be avoided by the new approach. Finally by utilising the transient response of a MR specimen, it is shown how the model structure can be detected in a practical application. The identified model agrees with the experimental measurements very well

    Surfactant Assisted Synthesis of LiFePO4 Nanostructures via Hydrothermal Processing

    Get PDF
    LiFePO4 is a potential cathode candidate for of secondary lithium batteries due to its low-cost, out-standing thermal stability and innocuity. In this paper, pure LiFePO4 obtained by hydrothermal method using cetyltrimethyl ammonium bromide (CTAB) as surfactant. LiFePO4 particles produced without any surfactant showed typical morphologies of perfect octahedral with size of ~1μm. For products prepared with addition CTAB, the amount of surfactant controlled the growth of LiFePO4 crystals, with which dif-ferent morphologies of plate, grains and flower-like structures were produced. Plate products displayed a capacity of 145.70 mAh•g-1 at 0.1C, which was superior to others. The results indicated the electrochemical performance depends crucially on the size and structure of active materials. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3520

    Structure and Electrochemical Performance of Li[Li0.2Co0.4Mn0.4]O2 Cathode Material for Lithium Ion Battery by Co-precipitation Method

    Get PDF
    The nano-structured Li[Li0.2Co0.4Mn0.4]O2 cathode material is synthesized by a co-precipitation method. X-ray diffraction shows that the synthesized material has a hexagonal α-NaFeO2 type structure with a space group R-3m. Scanning electron microscopy and transmission electron microscopy images show the homogeneous distribution with 100-200 nm. X-ray photoelectron spectroscopy results indicate that the oxi-dation states of Co and Mn in Li[Li0.2Co0.4Mn0.4]O2 are present in trivalence and tetravalence, respectively. The charge-discharge curves and cycling performance are analyzed in detail. The initial charge and dis-charge capacities are respectively 236.5 mAh g-1 and 140.3 mAh g-1 at the current density of 100 mA g-1 in the voltage range of 2.0-4.6 V. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3520

    Preparation of Nanostructured Li2MnO3 Cathode Materials by Single-Step Hydrothermal Method

    Get PDF
    Nanosized (10~50 nm) cathode material Li2MnO3 was prepared for with MnSO4·H2O,KMnO4 and Li- OH aqueous solution as the precursor via single-step hydrothermal reaction by controlling the reaction time, proportion of processor, and the reagent concentration. The prepared materials were well crystallized and exhibited a monoclinic Li2MnO3 structure with a space group of C2/m phase. The electrochemical performance of the material was tested at current density of 60 mAg-1 (1/4 C) between 4.3V and 2.0 V at room temperature, showing good electrochemical properties with the initial discharge capacity of 243 mAh·g-1, because it was more exposed to the electrolyte due to its nanostructure. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3519

    Numerical approaches for linear left-invariant diffusions on SE(2), their comparison to exact solutions, and their applications in retinal imaging

    Get PDF
    Left-invariant PDE-evolutions on the roto-translation group SE(2) (and their resolvent equations) have been widely studied in the fields of cortical modeling and image analysis. They include hypo-elliptic diffusion (for contour enhancement) proposed by Citti & Sarti, and Petitot, and they include the direction process (for contour completion) proposed by Mumford. This paper presents a thorough study and comparison of the many numerical approaches, which, remarkably, is missing in the literature. Existing numerical approaches can be classified into 3 categories: Finite difference methods, Fourier based finite element type of methods (equivalent to SE(2)-Fourier methods), and stochastic methods (Monte Carlo simulations). There are also 3 types of exact solutions to the PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in previous works by Duits and van Almsick in 2005. Here we provide an overview of these 3 types of exact solutions and explain how they relate to each of the 3 numerical approaches. We compute relative errors of numerical approaches to the exact solutions, and the Fourier based methods show us the best performance with smallest relative errors. We also provide an improvement of Mathematica algorithms for evaluating Mathieu-functions crucially in implementations of the exact solutions. Furthermore, we include an asymptotical analysis of the singularities within the kernels and we propose a probabilistic extension of underlying stochastic processes that overcomes the singular behavior in the origin of time-integrated kernels. Finally, we show retinal imaging applications of combining the left-invariant PDE-evolutions with invertible orientation scores

    Cluster Monte Carlo Simulations of the Nematic--Isotropic Transition

    Full text link
    We report the results of simulations of the Lebwohl-Lasher model of the nematic-isotropic transition using a new cluster Monte Carlo algorithm. The algorithm is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size, obeying finite size scaling for systems of size greater than 35. We thus obtain an estimate of the value of the transition temperature in the thermodynamic limit.Comment: 4 figure

    Hysteresis effect due to the exchange Coulomb interaction in short-period superlattices in tilted magnetic fields

    Full text link
    We calculate the ground-state of a two-dimensional electron gas in a short-period lateral potential in magnetic field, with the Coulomb electron-electron interaction included in the Hartree-Fock approximation. For a sufficiently short period the dominant Coulomb effects are determined by the exchange interaction. We find numerical solutions of the self-consistent equations that have hysteresis properties when the magnetic field is tilted and increased, such that the perpendicular component is always constant. This behavior is a result of the interplay of the exchange interaction with the energy dispersion and the spin splitting. We suggest that hysteresis effects of this type could be observable in magneto-transport and magnetization experiments on quantum-wire and quantum-dot superlattices.Comment: 3 pages, 3 figures, Revtex, to appear in Phys. Rev.
    corecore