1,342 research outputs found

    The Economics of investment in Movable interior Blankets for Fuel Conservation in Greenhouses

    Full text link
    A.E. Res. 80-2A model for evaluating the economics of investment in Movable Interior Blankets for fuel conservation in greenhouses was developed. The after-tax costs and benefits of the blanket were analyzed using the Net Present Value method. The model uses 13 input parameters to generate an estimate of the Net Present Value of the investment for its useful life. The results of two examples are reported. Sensitivity analyses were conducted to indicate the relative importance of the various input parameters. It was shown that changes in quantitiy or quality of crop would have very large effects on net present value. At this time, there is some disagreement regarding the effect of the blanket on crop growth. Further research is needed to substantiate and quantify the potential effects on yield and quality before the effect can be usefully included in estimates of net present value. Other suggested areas of research include (1) improving the materials, design and use of the blankets, and (2) improving the ability to predict the performance of the blanket in specific greenhouses

    Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System

    No full text
    MOPP039International audienceUsing a new extraction line currently under construction, the ATF2 experiment plans to test the novel compact final focus optics design with local chromaticity correction intended for use in future linear colliders. With a 1.3 GeV design beam of 30nm normalised vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical spot-size at the IP waist of 37nm. We discuss our planned strategy for tuning the ATF2 beam to meet the primary goal. Simulation studies have been performed to asses the effectiveness of the strategy, including “static” (installation) errors and dynamical effects (ground-motion, mechanical vibration, ring extraction jitter etc.). We have simulated all steps in the tuning procedure, from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within ~10% of the design optics value in at least 75% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks

    Approximating the Termination Value of One-Counter MDPs and Stochastic Games

    Get PDF
    One-counter MDPs (OC-MDPs) and one-counter simple stochastic games (OC-SSGs) are 1-player, and 2-player turn-based zero-sum, stochastic games played on the transition graph of classic one-counter automata (equivalently, pushdown automata with a 1-letter stack alphabet). A key objective for the analysis and verification of these games is the termination objective, where the players aim to maximize (minimize, respectively) the probability of hitting counter value 0, starting at a given control state and given counter value. Recently, we studied qualitative decision problems ("is the optimal termination value = 1?") for OC-MDPs (and OC-SSGs) and showed them to be decidable in P-time (in NP and coNP, respectively). However, quantitative decision and approximation problems ("is the optimal termination value ? p", or "approximate the termination value within epsilon") are far more challenging. This is so in part because optimal strategies may not exist, and because even when they do exist they can have a highly non-trivial structure. It thus remained open even whether any of these quantitative termination problems are computable. In this paper we show that all quantitative approximation problems for the termination value for OC-MDPs and OC-SSGs are computable. Specifically, given a OC-SSG, and given epsilon > 0, we can compute a value v that approximates the value of the OC-SSG termination game within additive error epsilon, and furthermore we can compute epsilon-optimal strategies for both players in the game. A key ingredient in our proofs is a subtle martingale, derived from solving certain LPs that we can associate with a maximizing OC-MDP. An application of Azuma's inequality on these martingales yields a computable bound for the "wealth" at which a "rich person's strategy" becomes epsilon-optimal for OC-MDPs.Comment: 35 pages, 1 figure, full version of a paper presented at ICALP 2011, invited for submission to Information and Computatio

    Simulation on the Breaking of αx Multiknob Orthogonality in the Presence of Gradient and Coupling Errors and experimental investigation

    No full text
    TUPWO017 - Work supported by the National Natural Science Foundation of China (NSFC, Project 11175192) and the ANR contract by IN2P3-CNRS (France) - ISBN 978-3-95450-122-9International audienceThe presence of a tilt of the IP Shintake monitor fringe pattern with respect to the x-y coordinate system of the beam can break the orthogonality in the main σ34 and σ32 waist corrections required to reduce the vertical beam size at IP. Concerning the method of doing αx scan and measuring the vertical beam size to diagnose the IPBSM fringe tilt or residual σ13, one thing should be studied is to check what could break the orthogonality of the αx knob other than σ13 and the IPBSM fringe tilt. In this paper, we report on the simulation study that check for the breaking of orthogonality of the αx knob in the presence of gradient and coupling errors; to what extent this breaking of orthogonality can go; and also the breaking of the orthogonality of the other multiknobs

    Plans and progress towards tuning the ATF2 final focus system to obtain a 35 nm IP waist

    No full text
    FR5PFP021International audienceUsing a new extraction line currently being commissioned, the ATF2 experiment plans to test a novel compact final focus optics design using a local chromaticity correction scheme, such as could be used in future linear colliders*. Using a 1.3 GeV beam of ∼30nm normalised vertical emittance extracted from the ATF damping ring, the primary goal is to achieve a vertical IP waist of 35nm. We discuss our planned strategy, implementation details and early experimental results for tuning the ATF2 beam to meet the primary goal. These optics require uniquely tight tolerances on some magnet strengths and positions, we discuss efforts to re-match the optics to meet these requirements using high-precision measurements of key magnet elements. We simulated in detail the tuning procedure using several algorithms and different code implementations for comparison from initial orbit establishment to final IP spot-size tuning. Through a Monte Carlo study of 100's of simulation seeds we find we can achieve a spot-size within 10% of the design optics value in at least 90% of cases. We also ran a simulation to study the long-term performance with the use of beam-based feedbacks

    Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)

    Full text link
    The dissociative adsorption of hydrogen on Pd(100) has been studied by ab initio quantum dynamics and ab initio molecular dynamics calculations. Treating all hydrogen degrees of freedom as dynamical coordinates implies a high dimensionality and requires statistical averages over thousands of trajectories. An efficient and accurate treatment of such extensive statistics is achieved in two steps: In a first step we evaluate the ab initio potential energy surface (PES) and determine an analytical representation. Then, in an independent second step dynamical calculations are performed on the analytical representation of the PES. Thus the dissociation dynamics is investigated without any crucial assumption except for the Born-Oppenheimer approximation which is anyhow employed when density-functional theory calculations are performed. The ab initio molecular dynamics is compared to detailed quantum dynamical calculations on exactly the same ab initio PES. The occurence of quantum oscillations in the sticking probability as a function of kinetic energy is addressed. They turn out to be very sensitive to the symmetry of the initial conditions. At low kinetic energies sticking is dominated by the steering effect which is illustrated using classical trajectories. The steering effects depends on the kinetic energy, but not on the mass of the molecules. Zero-point effects lead to strong differences between quantum and classical calculations of the sticking probability. The dependence of the sticking probability on the angle of incidence is analysed; it is found to be in good agreement with experimental data. The results show that the determination of the potential energy surface combined with high-dimensional dynamical calculations, in which all relevant degrees of freedon are taken into account, leads to a detailed understanding of the dissociation dynamics of hydrogen at a transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.

    The transmission of vertical vibration through seats: influence of the characteristics of the human body

    No full text
    The transmission of vibration through a seat depends on the impedance of the seat and the apparent mass of the seat occupant. This study was designed to determine how factors affecting the apparent mass of the body (age, gender, physical characteristics, backrest contact, and magnitude of vibration) affect seat transmissibility. The transmission of vertical vibration through a car seat was measured with 80 adults (41 males and 39 females aged 18–65) at frequencies between 0.6 and 20 Hz with two backrest conditions (no backrest and backrest), and with three magnitudes of random vibration (0.5, 1.0, and 1.5 m s-2 rms). Linear regression models were used to study the effects of subject physical characteristics (age, gender, and anthropometry) and features of their apparent mass (resonance frequency, apparent mass at resonance and at 12 Hz) on the measured seat transmissibility. The strongest predictor of both the frequency of the principal resonance in seat transmissibility and the seat transmissibility at resonance was subject age, with other factors having only marginal effects. The transmissibility of the seat at 12 Hz depended on subject age, body mass index, and gender. Although subject weight was strongly associated with apparent mass, weight was not strongly associated with seat transmissibility. The resonance frequency of the seat decreased with increases in the magnitude of the vibration excitation and increased when subjects made contact with the backrest. Inter-subject variability in the resonance frequency and transmissibility at resonance was less with greater vibration excitation, but was largely unaffected by backrest contact. A lumped parameter seat–person model showed that changes in seat transmissibility with age can be predicted from changes in apparent mass with age, and that the dynamic stiffness of the seat appeared to increase with increased loading so as to compensate for increases in subject apparent mass associated with increased sitting weight

    Quantum Phase Transitions in the One-Dimensional S=1 Spin-Orbital Model: Implications for Cubic Vanadates

    Full text link
    We investigate ground-state properties and quantum phase transitions in the one-dimensional S=1 spin-orbital model relevant to cubic vanadates. Using the density matrix renormalization group, we compute the ground-state energy, the magnetization and the correlation functions for different values of the Hund's coupling JHJ_H and the external magnetic field. It is found that the magnetization jumps at a certain critical field, which is a hallmark of the field-induced first-order phase transition. The phase transition driven by JHJ_H is also of first order. We also consider how the lattice-induced ferro-type interaction between orbitals modifies the phase diagram, and discuss the results in a context of the first-order phase transition observed in YVO3_3 at 77K.Comment: 7 pages, 7 figur

    UV and EUV Instruments

    Full text link
    We describe telescopes and instruments that were developed and used for astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV) regions of the electromagnetic spectrum. The wavelength ranges covered by these bands are not uniquely defined. We use the following convention here: The EUV and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The limitation between both ranges is a natural choice, because the hydrogen Lyman absorption edge is located at 912 Angstroem. At smaller wavelengths, astronomical sources are strongly absorbed by the interstellar medium. It also marks a technical limit, because telescopes and instruments are of different design. In the EUV range, the technology is strongly related to that utilized in X-ray astronomy, while in the UV range the instruments in many cases have their roots in optical astronomy. We will, therefore, describe the UV and EUV instruments in appropriate conciseness and refer to the respective chapters of this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy, Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper, Springer-Verlag, Berlin, 201

    Transitions from small to large Fermi momenta in a one-dimensional Kondo lattice model

    Full text link
    We study a one-dimensional system that consists of an electron gas coupled to a spin-1/2 chain by Kondo interaction away from half-filling. We show that zero-temperature transitions between phases with "small" and "large" Fermi momenta can be continuous. Such a continuous but Fermi-momentum-changing transition arises in the presence of spin anisotropy, from a Luttinger liquid with a small Fermi momentum to a Kondo-dimer phase with a large Fermi momentum. We have also added a frustrating next-nearest-neighbor interaction in the spin chain to show the possibility of a similar Fermi-momentum-changing transition, between the Kondo phase and a spin-Peierls phase, in the spin isotropic case. This transition, however, appears to involve a region in which the two phases coexist.Comment: The updated version clarifies the definitions of small and large Fermi momenta, the role of anisotropy, and how Kondo interaction affects Luttinger liquid phase. 12 pages, 5 figure
    corecore