7 research outputs found

    Magnetoresistance and electronic structure of asymmetric GaAs/AlGaAs double quantum wells in the in-plane/tilted magnetic field

    Full text link
    Bilayer two-dimensional electron systems formed by a thin barrier in the GaAs buffer of a standard heterostructure were investigated by magnetotransport measurements. In magnetic fields oriented parallel to the electron layers, the magnetoresistance exhibits an oscillation associated with the depopulation of the higher occupied subband and the field-induced transition into a decoupled bilayer. Shubnikov-de Haas oscillations in slightly tilted magnetic fields allow to reconstruct the evolution of the electron concentration in the individual subbands as a function of the in-plane magnetic field. The characteristics of the system derived experimentally are in quantitative agreement with numerical self-consistent-field calculations of the electronic structure.Comment: 6 pages, 5 figure

    Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

    Get PDF
    We investigate the current injection into a ballistic conductor under the space-charge limited regime, when the distribution function of injected carriers is an arbitrary function of energy F_c(epsilon). The analysis of the coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially suppressed by Coulomb correlations, and the suppression level is determined by the shape of F_c(epsilon). This is in contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved shot-noise suppression has been found for an arbitrary (non-Poissonian) injection, which may suggest a new field of investigation on the optimization of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde

    Suppression of non-Poissonian shot noise by Coulomb correlations in ballistic conductors

    Get PDF
    We investigate the current injection into a ballistic conductor under the space-charge limited regime, when the distribution function of injected carriers is an arbitrary function of energy F_c(epsilon). The analysis of the coupled kinetic and Poisson equations shows that the injected current fluctuations may be essentially suppressed by Coulomb correlations, and the suppression level is determined by the shape of F_c(epsilon). This is in contrast to the time-averaged quantities: the mean current and the spatial profiles are shown to be insensitive to F_c(epsilon) in the leading-order terms at high biases. The asymptotic high-bias behavior for the energy resolved shot-noise suppression has been found for an arbitrary (non-Poissonian) injection, which may suggest a new field of investigation on the optimization of the injected energy profile to achieve the desired noise-suppression level.Comment: extended version 4 -> 8 pages, examples and figure adde

    Analysis of Infection Characteristics and Antiparasite Immune Responses in Resistant Compared with Susceptible Hosts

    No full text
    corecore