57 research outputs found

    The Weak Charge of the Proton and New Physics

    Get PDF
    We address the physics implications of a precision determination of the weak charge of the proton, QWP, from a parity violating elastic electron proton scattering experiment to be performed at the Jefferson Laboratory. We present the Standard Model (SM) expression for QWP including one-loop radiative corrections, and discuss in detail the theoretical uncertainties and missing higher order QCD corrections. Owing to a fortuitous cancellation, the value of QWP is suppressed in the SM, making it a unique place to look for physics beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and leptoquarks. We argue that a QWP measurement will provide an important complement to both high energy collider experiments and other low energy electroweak measurements. The anticipated experimental precision requires the knowledge of the order alpha_s corrections to the pure electroweak box contributions. We compute these contributions for QWP, as well as for the weak charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure

    Limits on the monopole magnetic field from measurements of the electric dipole moments of atoms, molecules and the neutron

    Full text link
    A radial magnetic field can induce a time invariance violating electric dipole moment (EDM) in quantum systems. The EDMs of the Tl, Cs, Xe and Hg atoms and the neutron that are produced by such a field are estimated. The contributions of such a field to the constants, χ\chi of the T,P-odd interactions χeNs/s\chi_e {\bf N} \cdot {\bf s}/s and χNNI/I\chi_N {\bf N} \cdot {\bf I}/I are also estimated for the TlF, HgF and YbF molecules (where s{\bf s} (I{\bf I}) is the electron (nuclear) spin and N{\bf N} is the molecular axis). The best limit on the contact monopole field can be obtained from the measured value of the Tl EDM. The possibility of such a field being produced from polarization of the vacuum of electrically charged magnetic monopoles (dyons) by a Coulomb field is discussed, as well as the limit on these dyons. An alternative mechanism involves chromomagnetic and chromoelectric fields in QCD.Comment: Uses RevTex, 16 pages, 4 postscript figures. An explanation of why there is no orbital contribution to the EDM has been added, and the presentation has been improved in genera

    Investigation of the high momentum component of nuclear wave function using hard quasielastic A(p,2p)X reactions

    Get PDF
    We present theoretical analysis of the first data on the high energy and momentum transfer (hard) quasielastic C(p,2p)XC(p,2p)X reactions. The cross section of hard A(p,2p)XA(p,2p)X reaction is calculated within the light-cone impulse approximation based on two-nucleon correlation model for the high-momentum component of the nuclear wave function. The nuclear effects due to modification of the bound nucleon structure, soft nucleon-nucleon reinteraction in the initial and final states of the reaction with and without color coherence have been considered. The calculations including these nuclear effects show that the distribution of the bound proton light-cone momentum fraction (α)(\alpha) shifts towards small values (α<1\alpha < 1), effect which was previously derived only within plane wave impulse approximation. This shift is very sensitive to the strength of the short range correlations in nuclei. Also calculated is an excess of the total longitudinal momentum of outgoing protons. The calculations are compared with data on the C(p,2p)XC(p,2p)X reaction obtained from the EVA/AGS experiment at Brookhaven National Laboratory. These data show α\alpha-shift in agreement with the calculations. The comparison allows also to single out the contribution from short-range nucleon correlations. The obtained strength of the correlations is in agreement with the values previously obtained from electroproduction reactions on nuclei.Comment: 30 pages LaTex file and 19 eps figure

    Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model (I) -- phenomenological predictions --

    Full text link
    Theoretical predictions are given for the light-flavor sea-quark distributions including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken here of the SU(3) symmetry breaking effects due to the mass difference between the strange and nonstrange quarks. This effective mass difference Δms\Delta m_s between the strange and nonstrange quarks is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the {\it light-flavor sea-quark asymmetry} as exemplified by the observables dˉ(x)uˉ(x),dˉ(x)/uˉ(x),Δuˉ(x)Δdˉ(x)\bar{d} (x) - \bar{u} (x), \bar{d} (x) / \bar{u} (x), \Delta \bar{u} (x) - \Delta \bar{d} (x) as well as on the {\it particle-antiparticle asymmetry} of the strange quark distributions represented by s(x)sˉ(x),s(x)/sˉ(x),Δs(x)Δsˉ(x)s (x) - \bar{s} (x), s (x) / \bar{s} (x), \Delta s (x) - \Delta \bar{s} (x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for dˉ(x)uˉ(x)\bar{d} (x) - \bar{u} (x), the E866 data for dˉ(x)/uˉ(x)\bar{d} (x) / \bar{u} (x), the CCFR data and Barone et al.'s fit for s(x)/sˉ(x)s (x) / \bar{s} (x) etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)Δsˉ(x)0\Delta s (x) \ll \Delta \bar{s}(x) \lesssim 0 and Δdˉ(x)<0<Δuˉ(x)\Delta \bar{d}(x) < 0 < \Delta \bar{u}(x), although the verification of these predictions must await more elaborate experimental investigations in the near future.Comment: 36 pages, 20 EPS figures. The revised version accepted for publication in Phys. Rev. D. The title has been changed, and the body of the paper has been divided into two pieces, i.e.. the present one which discusses the main phenomenological predictions of the model and the other one which describes the detailed formulation of the flavor SU(3) chiral quark soliton model to predict light-flavor quark and antiquark distribution functions in the nucleo

    Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    Full text link
    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.Comment: 64 page

    Probing Nucleon Spin Structure

    Full text link
    One of the important questions in high energy physics is the relation of quark and gluon spin to that of the nucleons which they comprise. Polarization experiments provide a mechanism to probe the spin properties of elementary particles and provide crucial tests of Quantum Chromodynamics (QCD). The theoretical and experimental status of this fundamental question will be reviewed in this paper.Comment: 65 pages, 3 Postscript figures, LaTeX. To be published in "Progress in Particle and Nuclear Physics

    Strong evidences of hadron acceleration in Tycho's Supernova Remnant

    Get PDF
    Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS provided new fundamental pieces of information for understanding particle acceleration and non-thermal emission in SNRs. We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics and multi-wavelength emission by accounting for particle acceleration at the forward shock via first order Fermi mechanism. We adopt here a quick and reliable semi-analytical approach to non-linear diffusive shock acceleration which includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. We find that Tycho's forward shock is accelerating protons up to at least 500 TeV, channelling into CRs about the 10 per cent of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ~300 micro Gauss). In such a strong magnetic field the velocity of the Alfv\'en waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction {\propto} E^-2. This latter effect is crucial to explain the GeV-to-TeV gamma-ray spectrum as due to the decay of neutral pions produced in nuclear collisions between accelerated nuclei and the background gas. The self-consistency of such an hadronic scenario, along with the fact that the concurrent leptonic mechanism cannot reproduce both the shape and the normalization of the detected the gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.Comment: Minor changes. Accepted for publication in Astronomy & Astrophysic

    Quantum Measurement of a Coupled Nanomechanical Resonator -- Cooper-Pair Box System

    Get PDF
    We show two effects as a result of considering the second-order correction to the spectrum of a nanomechanical resonator electrostatically coupled to a Cooper-pair box. The spectrum of the Cooper-pair box is modified in a way which depends on the Fock state of the resonator. Similarly, the frequency of the resonator becomes dependent on the state of the Cooper-pair box. We consider whether these frequency shifts could be utilized to prepare the nanomechanical resonator in a Fock state, to perform a quantum non-demolition measurement of the resonator Fock state, and to distinguish the phase states of the Cooper-pair box

    Radiative processes (tau -> mu gamma, mu -> e gamma and muon g-2) as probes of ESSM/SO(10)

    Full text link
    The Extended Supersymmetric Standard Model (ESSM), motivated on several grounds, introduces two vectorlike families (16 + 16-bar) of SO(10)) with masses of order one TeV. It is noted that the successful predictions of prior work on fermion masses and mixings, based on MSSM embedded in SO(10), can be retained rather simply within the ESSM extension. These include an understanding of the smallness of V_{cb} ~ 0.04 and the largeness of nu_mu - nu_tau oscillation angle, sin^2 2 theta_{nu_mu nu_tau}^{osc} ~ 1. We analyze the new contributions arising through the exchange of the vectorlike families of ESSM to radiative processes including tau -> mu gamma, mu -> e gamma, b -> s gamma, EDM of the muon and the muon (g-2). We show that ESSM makes significant contributions especially to the decays tau -> mu gamma and mu -> e gamma and simultaneously to muon (g-2). For a large and plausible range of relevant parameters, we obtain: a_mu^{ESSM} ~ +(10-40) times 10^{-10}, with a correlated prediction that tau -> mu gamma should be discovered with an improvement in its current limit by a factor of 3-20. The implications for mu -> e gamma are very similar. The muon EDM is within reach of the next generation experiments. Thus, ESSM with heavy leptons being lighter than about 700 GeV (say) can be probed effectively by radiative processes before a direct search for these vectorlike leptons and quarks is feasible at the LHC.Comment: 27 pages LaTex, 2 figure
    corecore