14 research outputs found

    Hydrothermal plume - particle fluxes at 13N on the East Pacific Rise

    No full text
    We have investigated the geochemical flux to sediment traps deployed close to the Totem vent site, 13°N EPR. An important emphasis has been to investigate what proportion of this settling flux derives from direct co-precipitation of vent-fluid material as polymetallic sulphides and what proportion is in the form of Fe oxyhydroxide material which not only co-precipitates vent-fluid metals but can also scavenge dissolved material from seawater. Mass fluxes and major element compositions (Fe, S, Al, Mn, CaCO3 and Corg) for our near vent samples compare well with results from previously reported Pacific hydrothermal sediment trap studies, both at this site and on the Endeavour Ridge. Our samples record large fluxes of Cu, Zn and Pb, as well as V and P, all of which are in excess over typical open-ocean trap values. If P and V are transported to the traps as sinking Fe-oxyhydroxide material from the neutrally buoyant plume, we calculate that 10–20% of the Fe entering the near vent traps occurs as oxidised material with the remaining 80–90% being supplied by polymetallic sulphides. Shale-normalised REE distribution patterns for near-vent trap samples are similar to those for local vent fluids and sulphidic sediments. Detailed mass balance calculations, however, reveal evidence for additional input from hydrothermal Fe-oxyhydroxide material with a scavenged REE composition that is less "evolved" than that reported for local neutrally buoyant plume particles. U fluxes into the near vent traps are high and consistent with uptake by sulphides. 210Pb fluxes are also high and appear dominated by co-precipitation direct from vent-fluids as Pb-sulphides. In contrast, Fe-oxyhydroxide scavenging from seawater can account for the entire 230Th and 232Th fluxes reported. If the scavenging processes identified here were similarly active in neutrally buoyant plumes, we would predict hydrothermal scavenging to impact ocean biogeochemical cycles significantly, e.g. causing removal of ca. 10% of the dissolved 230Th production from the deep water column, out to a distance of ca. 10–100 km off-axis, along the entire 60,000 km global ridge-crest

    Effects of seafloor and laboratory dissolution on the Mg/Ca composition of Globigerinoides sacculifer and Orbulina universa tests - A laser ablation ICPMS microanalysis perspective

    No full text
    Partial or selective dissolution of planktonic foraminiferal tests on the seafloor has been shown to alter original test Mg/Ca compositions and thus may limit the accuracy of Mg/Ca-based thermometry for reconstructions of past sea surface temperatures. We have employed laser ablation ICPMS to determine the extent of dissolution-caused changes in Mg/Ca distribution across individual chamber walls of the planktonic foraminifera Globigerinoides sacculifer and Orbulina universa. G. sacculifer samples collected from a core-top depth transect in the NE Indian Ocean and laboratory dissolution experiments show little if any evidence of preferential removal of Mg-rich calcite layers by progressive dissolution of the tests. We attribute the absence of selective dissolution to the banded distribution of Mg across the chamber walls of these foraminiferal species and to the minimal presence of calcite crusts with relatively low-Mg composition on the outer surfaces of tests. Mg/Ca microanalyses of G. sacculifer from core-top samples further indicate that for samples collected above the calcite lysocline the effect of postdepositional dissolution on Mg/Ca sample mean values is minimal and within the uncertainty of Mg/Ca thermometry (i.e. ±0.4mmol/mol; ±0.8°C at ~28°C). Comparison with previously published results for G. sacculifer supports these observations. Simple modelling of G. sacculifer test dissolution indicates that selective removal of calcite with high-Mg/Ca values from within the final chamber of G. sacculifer test appears insufficient to cause the ~10% decrease in Mg/Ca values observed above calcite lysocline. These changes in test composition might be related to development/removal as a function of Δ[CO32-] of a thin diagenetic surface coating which has a relatively high-Mg/Ca composition (i.e. 20-25mmol/mol). © 2010 Elsevier B.V
    corecore