50 research outputs found

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF

    Neutron imaging at the NIF

    No full text
    The National Ignition Facility neutron imaging system (NIS) is an important diagnostic for understanding ignition experiments at the NIF in late 2010. The goal of the diagnostic is to provide spatially resolved information on the production of prompt and scattered neutrons from imploded ignition targets. This information may be used to diagnose hohlraum drive symmetry and pointing conditions, or study the dynamics of DT burn within the ICF target. In this paper we will discuss NIF relevant neutron imaging issues, goals, and current requirements

    High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility

    No full text
    The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the DT neutron spectrum from cryogenically layered Inertial Confinement Fusion (ICF) implosions. Yield, areal density, apparent ion temperature and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM

    The neutron imaging system fielded at the National Ignition Facility

    No full text
    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′) reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware

    Indications of flow near maximum compression in layered DT implosions at the National Ignition Facility

    No full text
    An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium and tritium (DT) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility (NIF). We present measurements of neutrons from such implosions. The apparent ion temperatures (Tion) are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD Tions are observed, and the difference is seen to increase with increasing apparent DT Tion. The line-of-sight r.m.s. variations of both DD and DT Tion are small, ~150 eV, indicating an isotropic source. DD neutron yields are consistently high relative to the DT neutron yields given the observed Tions. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to DT Tion > DD Tion, but are in a 1D model insufficient to explain the data. We hypothesize that in a 3D interpretation, these effects combined could explain the results

    The neutron imaging system fielded at the National Ignition Facility

    No full text
    We have fielded a neutron imaging system at the National Ignition Facility to collect images of fusion neutrons produced in the implosion of inertial confinement fusion experiments and scattered neutrons from (n, n′) reactions of the source neutrons in the surrounding dense material. A description of the neutron imaging system is presented, including the pinhole array aperture, the line-of-sight collimation, the scintillator-based detection system and the alignment systems and methods. Discussion of the alignment and resolution of the system is presented. We also discuss future improvements to the system hardware
    corecore