19 research outputs found
Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains
Intestinal carriage of extended-spectrum beta-lactamase (ESBL) -producing bacteria in food-producing animals and contamination of retail meat may contribute to increased incidences of infections with ESBL-producing bacteria in humans. Therefore, distribution of ESBL genes, plasmids and strain genotypes in Escherichia coli obtained from poultry and retail chicken meat in the Netherlands was determined and defined as ‘poultry-associated’ (PA). Subsequently, the proportion of E. coli isolates with PA ESBL genes, plasmids and strains was quantified in a representative sample of clinical isolates. The E. coli were derived from 98 retail chicken meat samples, a prevalence survey among poultry, and 516 human clinical samples from 31 laboratories collected during a 3-month period in 2009. Isolates were analysed using an ESBL-specific microarray, sequencing of ESBL genes, PCR-based replicon typing of plasmids, plasmid multi-locus sequence typing (pMLST) and strain genotyping (MLST). Six ESBL genes were defined as PA (blaCTX-M-1, blaCTX-M-2, blaSHV-2, blaSHV-12, blaTEM-20, blaTEM-52): 35% of the human isolates contained PA ESBL genes and 19% contained PA ESBL genes located on IncI1 plasmids that were genetically indistinguishable from those obtained from poultry (meat). Of these ESBL genes, 86% were blaCTX-M-1 and blaTEM-52 genes, which were also the predominant genes in poultry (78%) and retail chicken meat (75%). Of the retail meat samples, 94% contained ESBL-producing isolates of which 39% belonged to E. coli genotypes also present in human samples. These findings are suggestive for transmission of ESBL genes, plasmids and E. coli isolates from poultry to humans, most likely through the food chain
Multi-centre evaluation of a phenotypic extended spectrum β-lactamase detection guideline in the routine setting
AbstractThis study aimed to evaluate the routine setting performance of a guideline for phenotypic detection of extended spectrum β-lactamases (ESBLs) in Enterobacteriaceae, recommending ESBL confirmation with Etest or combination disc for isolates with a positive ESBL screen test (i.e. cefotaxime and/or ceftazidime MIC >1 mg/L or an automated system ESBL warning). Twenty laboratories submitted 443 Enterobacteriaceae with a positive ESBL screen test and their confirmation test result (74% Escherichia coli, 12% Enterobacter cloacae, 8% Klebsiella pneumoniae, 3% Proteus mirabilis, 2% Klebsiella oxytoca). Presence of ESBL genes was used as reference test. Accuracy of local phenotypic ESBL detection was 88%. The positive predictive value (PPV) of local screen tests was 70%, and differed per method (Vitek-2: 69%, Phoenix: 68%, disc diffusion: 92%), and species (95% K. pneumoniae-27% K. oxytoca). A low PPV (3%) was observed for isolates with automated system alarm but third-generation cephalosporin MICs <2 mg/L. Local ESBL confirmation had a PPV and negative predictive value (NPV) of 93% and 90%, respectively. Compared with centrally performed confirmation tests, 7% of local tests were misinterpreted. Combination disc was more specific than Etest (91% versus 61%). Confirmation tests were not reliable for P. mirabilis and K. oxytoca (PPV 33% and 38%, respectively, although NPVs were 100%). In conclusion, performance of Etests could be enhanced by education of technicians to improve their interpretation, by genotypic ESBL confirmation of P. mirabilis and K. oxytoca isolates with positive phenotypic ESBL confirmation, and by interpreting isolates with a positive ESBL alarm but an MIC <2 mg/L for cefotaxime and ceftazidime as ESBL-negative
Broad-spectrum β-lactamase in Enterobacteriaceae: detection, prevalence, and source tracking
Enterobacteriaceae can cause a wide variety of infections ranging from gastrointestinal syndromes to urinary tract infections. These infections have significant mortality rates. Many classes of antibiotics are used to treat these infections. In particular, third-generation cephalosporins are used as part of empiric treatment world-wide in case of severe infections that may be caused by Enterobacteriaceae. The emergence of multi-resistant Enterobacteriaceae, especially those carrying extended-spectrum beta-lactamases (ESBLs) and carbapenemases pose a threat to public health. In chapter 2, 3, and 4 new new detection methods of ESBLs are described. In chapter 5 a bacterial typing method is evaluated. In chapter 6 are the previously described techniques, among others, used to detect the prevalence of ESBLs in the Netherlands. In chapter 7 and 8 the possibility of poultry and poultry meat as a source for humans for ESBL bacteria is investigated
The coil-to-globule transition of single-chain polymeric nanoparticles with a chiral internal secondary structure
The intramolecular folding of chiral single polymeric chains into single-chain polymeric nanoparticles (SCPNs) via π-stacking was investigated. To this end, hydrophilic polymers grafted with structuring, chiral 3,3′-bis(acylamino)-2,2′-bipyridine-substituted benzene-1,3,5-tricarboxamides (BiPy-BTAs) units were prepared via ring-opening metathesis polymerization (ROMP). A combination of spectroscopic and scattering techniques was employed to obtain a better understanding of the folding behavior and the chiral internal structure of these systems. Circular dichroism spectroscopy showed that the folding of the polymer is highly dependent on the solvent quality and temperature. The folding process in water was fine-tuned via the addition of a good cosolvent (tetrahydrofuran), resulting in an optimal balance between the conformational freedom of the polymer's backbone and the stability of the π-stacked units. Small-angle X-ray scattering (SAXS) experiments showed that the shape of the SCPNs is controlled by the formation of a chiral internal secondary structure
Selective absorption of hydrophobic cations in nanostructured porous materials from cross-linked hydrogen-bonded columnar liquid crystals
A nanostructured porous material is obtained by crosslinking of a self-assembled system consisting of columnar liquid crystals with polyamines and removal of the template. For this purpose, a columnar liquid crystal with liquid crystalline properties at room temperature is synthesized and fully characterized. The orthogonal self-assembly of the columnar liquid crystal with polyamines (i.e., PPI dendrimers) results in the formation of nanosegregated structures. When crosslinked by photopolymerization a nanostructured crosslinked material is obtained. Partial removal of the polyamine template leads to a nanostructured porous material, which is characterized and the absorbent properties are investigated. The polarity of the porous material is probed and the porous material is used for the selective absorption of cationic dye molecules
Injectable hydrogels from segmented PEG-bisurea copolymers
We describe the preparation of an injectable, biocompatible, and elastic segmented copolymer hydrogel for biomedical applications, with segmented hydrophobic bisurea hard segments and hydrophilic PEG segments. The segmented copolymers were obtained by the step growth polymerization of amino-terminated PEG and aliphatic diisocyanate. Due to their capacity for multiple hydrogen bonding within the hydrophobic segments, these copolymers can form highly stable gels in water at low concentrations. Moreover, the gels show shear thinning by a factor of 40 at large strain, which allows injection through narrow gauge needles. Hydrogel moduli are highly tunable via the physical cross-link density and the length of the hydrophilic segments. In particular, the mechanical properties can be optimized to match the properties of biological host tissues such as muscle tissue and the extracellular matrix
Improving the folding of supramolecular copolymers by controlling the assembly pathway complexity
A family of amphiphilic, heterograft copolymers containing hydrophilic, hydrophobic, and supramolecular units based on Jeffamine M-1000, dodecylamine, and benzene-1,3,5-tricarboxamide (BTA) motifs, respectively, was prepared via a postfunctionalization approach. The folding of the copolymers in water into nanometer-sized particles was analyzed by a combination of dynamic and static light scattering, circular dichroism spectroscopy, and small-angle neutron scattering. The sample preparation protocol was crucial for obtaining reproducible and consistent results, showing that only full control over the structure and pathway complexity will afford the desired folded structure, a phenomenon similar to protein folding. The results revealed that relatively small changes in the polymer's graft composition strongly affected the intra- versus intermolecular assembly processes. Depending on the amount of the hydrophobic grafts based on either dodecyl or BTA groups, pronounced behavioral differences were observed for copolymers that comprise similar degrees of hydrophobic content. A high number of BTA grafts (>10%) resulted in the formation of multichain aggregates comprising around six polymer chains. In contrast, for copolymers comprising up to 10% BTA grafts the folding results in nanoparticles that adopt open, sparse conformations and comprise one to two polymer chains. Interestingly, predominantly single-chain polymeric nanoparticles were formed when the copolymer comprised only Jeffamine or Jeffamine and dodecyl grafts. In addition, replacing part of the BTA grafts by hydrophobic dodecyl grafts while keeping the hydrophobic content constant promoted single-chain folding and resulted in the formation of a compact, globular nanoparticle with a more structured interior. Thus, the intra- and intermolecular self-assembly pathways can be directed by carefully tuning the polymer's hydrophilic-hydrophobic balance in combination with the number of supramolecular grafts
Injectable hydrogels from segmented PEG-bisurea copolymers
We describe the preparation of an injectable, biocompatible, and elastic segmented copolymer hydrogel for biomedical applications, with segmented hydrophobic bisurea hard segments and hydrophilic PEG segments. The segmented copolymers were obtained by the step growth polymerization of amino-terminated PEG and aliphatic diisocyanate. Due to their capacity for multiple hydrogen bonding within the hydrophobic segments, these copolymers can form highly stable gels in water at low concentrations. Moreover, the gels show shear thinning by a factor of 40 at large strain, which allows injection through narrow gauge needles. Hydrogel moduli are highly tunable via the physical cross-link density and the length of the hydrophilic segments. In particular, the mechanical properties can be optimized to match the properties of biological host tissues such as muscle tissue and the extracellular matrix
Consequences of chirality on the dynamics of a water-soluble supramolecular polymer
The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers
Evaluation of a commercial microarray as a confirmation test for the presence of extended-spectrum beta-lactamases in isolates from the routine clinical setting.
Item does not contain fulltextSince the diagnostic characteristics of the Check-KPC ESBL microarray as a confirmation test on isolates obtained in a routine clinical setting have not been determined, we evaluated the microarray in a random selection of 346 clinical isolates with a positive ESBL screen test (MIC >1 mg/L for cefotaxime or ceftazidime or an ESBL alarm from the Phoenix or Vitek-2 expert system) collected from 31 clinical microbiology laboratories in the Netherlands in 2009. Using sequencing as the reference method the sensitivity of the microarray was 97% (237/245), the specificity 98% (97/99), the positive predictive value 99% (237/239) and the negative predictive value 92% (97/105).1 september 201