21 research outputs found

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    Constraints on cosmic strings using data from the first Advanced LIGO observing run

    Get PDF
    Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider

    Gastrin-like peptic and pepsin secretion

    No full text

    Effect of replacing a portion of inorganic chloride trace minerals with trace mineral amino acid complexes

    No full text
    ABSTRACT: The objective was to determine whether replacing a portion of inorganic chloride trace minerals and cobalt carbonate in the diet with AA complexes of trace minerals and cobalt glucoheptonate will improve lactating cow performance, feed efficiency, and calf performance. In a clinical trial, 69 Holstein cows entering second lactation and greater were randomly assigned to 1 of 2 treatments, with the total dietary trace mineral concentration the same between treatments, starting 1 wk after dry off (50 to 57 d before expected parturition) until 154 d in milk (DIM): (1) an inorganic chloride trace mineral (ITM) blend consisting of Zn (75 mg/kg), Mn (65 mg/kg), and Cu (10 mg/kg) as hydroxychlorides and Co (1 mg/kg) as carbonate (n = 37) or (2) partial replacement of ITM with AA complexes of Zn (40 mg/kg), Mn (20 mg/kg), and Cu (3.5 mg/kg) and Co glucoheptonate (1 mg/kg; AATM; Availa-Dairy, Zinpro Corp.; n = 32). Dry matter intake (DMI) was recorded daily from enrollment through wk 8, and milk yields were recorded daily from calving through wk 22. Milk composition and body weights (BW) were collected weekly. Serum samples were analyzed for albumin (Alb), cholesterol (Chol), total bilirubin (Bili), aspartate aminotransferase (AST), haptoglobin, β-hydroxybutyrate (BHB), and Ca. A liver health index (LHI) was calculated based on Bili, Chol, and Alb concentrations. A liver functionality index (LFI) was calculated to standardize changes in Alb, Chol, and Bili from 4 to 29 DIM. Greater LHI and LFI indicate better health status. Colostrum was analyzed for IgG and Brix, and calf serum was analyzed for IgG. Calf growth was monitored through 9 wk of age (AATM: n = 12, ITM: n = 10). Data were analyzed using SAS software with mixed effects models and repeated-measures analysis, when applicable. Survival analysis for pregnancy by 154 DIM was analyzed by Cox proportional and Kaplan-Meier hazards models. Disorder incidence was tested with Fisher's exact test. Prepartum DMI as a percent of BW was lower in cows fed AATM and not significant postpartum. Cows fed AATM produced more milk from wk 1 to 8 and from wk 1 to 22. Energy-corrected milk yield and colostrum measures did not significantly differ between treatments. A treatment by time interaction was seen for AST and BHB; cows fed AATM tended to have lower AST concentrations at 28 DIM and lower concentrations in BHB through 29 DIM, though not statistically significant. Cows fed AATM had greater LHI at 4 DIM. Haptoglobin, Ca, LFI, hazard of pregnancy, risk to first service, survival curves, or services per pregnancy did not significantly differ. Calf serum IgG and birth weight did not significantly differ between treatments. Calves from dams fed AATM had greater average daily gain than calves from dams fed ITM. Overall, cows fed AATM during the dry period and early lactation had improved postpartum performance and potential health improvements

    Effect of Prepartum DCAD Strategy and Level of Dietary Calcium on Postpartum Calcium Status and Performance of Multiparous Holstein Cows

    Full text link
    Periparturient hypocalcemia can be mitigated by reducing prepartum dietary DCAD; however, neither the extent of DCAD adjustment nor the level of dietary Ca fed with negative DCAD have been evaluated fully. This project aimed to compare the effects of two levels of prepartum dietary anion supplementation (urinary pH), two levels of dietary calcium, and the interactions, on parameters of calcium metabolism, health, and milk performance of transition dairy cows
    corecore