899 research outputs found

    Chaos assisted instanton tunneling in one dimensional perturbed periodic potential

    Full text link
    For the system with one-dimensional spatially periodic potential we demonstrate that small periodic in time perturbation results in appearance of chaotic instanton solutions. We estimate parameter of local instability, width of stochastic layer and correlator for perturbed instanton solutions. Application of the instanton technique enables to calculate the amplitude of the tunneling, the form of the spectrum and the lower bound for width of the ground quasienergy zone

    Noisy quadrature of squeezed light and laser cooling

    Full text link
    The laser cooling of atoms is a result of the combined effect of doppler shift, light shift and polarization gradient. These are basically undesirable phenomena. However, they combine gainfully in realizing laser cooling and trapping of the atoms. In this paper we discuss the laser cooling of atoms in the presence of the squeezed light with the decay of atomic dipole moment into noisy quadrature. We show that the higher decay rate of the atomic dipole moment into the noisy quadrature, which is also an undesirable effect, may contribute in realizing larger cooling force vis-a-vis normal laser light

    Generic properties of a quasi-one dimensional classical Wigner crystal

    Get PDF
    We studied the structural, dynamical properties and melting of a quasi-one-dimensional system of charged particles, interacting through a screened Coulomb potential. The ground state energy was calculated and, depending on the density and the screening length, the system crystallizes in a number of chains. As a function of the density (or the confining potential), the ground state configurations and the structural transitions between them were analyzed both by analytical and Monte Carlo calculations. The system exhibits a rich phase diagram at zero temperature with continuous and discontinuous structural transitions. We calculated the normal modes of the Wigner crystal and the magneto-phonons when an external constant magnetic field BB is applied. At finite temperature the melting of the system was studied via Monte Carlo simulations using the modifiedmodified LindemannLindemann criterioncriterion (MLC). The melting temperature as a function of the density was obtained for different screening parameters. Reentrant melting as a function of the density was found as well as evidence of directional dependent melting. The single chain regime exhibits anomalous melting temperatures according to the MLC and as a check we study the pair correlation function at different densities and different temperatures, formulating a different criterion. Possible connection with recent theoretical and experimental results are discussed and experiments are proposed.Comment: 13 pages text, 21 picture

    First-Principles Study of Magnetic Properties of 3dTransition Metals Doped in ZnO Nanowires

    Get PDF
    The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higherTcuseful for the nano-materials design of spintronics

    Moments of Nucleon Light Cone Quark Distributions Calculated in Full Lattice QCD

    Get PDF
    Moments of the quark density, helicity, and transversity distributions are calculated in unquenched lattice QCD. Calculations of proton matrix elements of operators corresponding to these moments through the operator product expansion have been performed on 163×3216^3 \times 32 lattices for Wilson fermions at β=5.6\beta = 5.6 using configurations from the SESAM collaboration and at β=5.5\beta = 5.5 using configurations from SCRI. One-loop perturbative renormalization corrections are included. At quark masses accessible in present calculations, there is no statistically significant difference between quenched and full QCD results, indicating that the contributions of quark-antiquark excitations from the Dirac Sea are small. Close agreement between calculations with cooled configurations containing essentially only instantons and the full gluon configurations indicates that quark zero modes associated with instantons play a dominant role. Naive linear extrapolation of the full QCD calculation to the physical pion mass yields results inconsistent with experiment. Extrapolation to the chiral limit including the physics of the pion cloud can resolve this discrepancy and the requirements for a definitive chiral extrapolation are described.Comment: 53 Pages Revtex, 26 Figures, 9 Tables. Added additional reference and updated referenced data in Table I

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%
    corecore