60 research outputs found

    Health inequalities among sexual minority adults: Evidence from ten U.S. states, 2010

    Get PDF
    Improving the health of lesbian, gay, and bisexual (LGB) individuals is a Healthy People 2020 goal; however, the IOM highlighted the paucity of information currently available about LGB populations

    Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Accurate assessments of current and future fertility—including overall trends and changing population age structures across countries and regions—are essential to help plan for the profound social, economic, environmental, and geopolitical challenges that these changes will bring. Estimates and projections of fertility are necessary to inform policies involving resource and health-care needs, labour supply, education, gender equality, and family planning and support. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 produced up-to-date and comprehensive demographic assessments of key fertility indicators at global, regional, and national levels from 1950 to 2021 and forecast fertility metrics to 2100 based on a reference scenario and key policy-dependent alternative scenarios. Methods: To estimate fertility indicators from 1950 to 2021, mixed-effects regression models and spatiotemporal Gaussian process regression were used to synthesise data from 8709 country-years of vital and sample registrations, 1455 surveys and censuses, and 150 other sources, and to generate age-specific fertility rates (ASFRs) for 5-year age groups from age 10 years to 54 years. ASFRs were summed across age groups to produce estimates of total fertility rate (TFR). Livebirths were calculated by multiplying ASFR and age-specific female population, then summing across ages 10–54 years. To forecast future fertility up to 2100, our Institute for Health Metrics and Evaluation (IHME) forecasting model was based on projections of completed cohort fertility at age 50 years (CCF50; the average number of children born over time to females from a specified birth cohort), which yields more stable and accurate measures of fertility than directly modelling TFR. CCF50 was modelled using an ensemble approach in which three sub-models (with two, three, and four covariates variously consisting of female educational attainment, contraceptive met need, population density in habitable areas, and under-5 mortality) were given equal weights, and analyses were conducted utilising the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. To capture time-series trends in CCF50 not explained by these covariates, we used a first-order autoregressive model on the residual term. CCF50 as a proportion of each 5-year ASFR was predicted using a linear mixed-effects model with fixed-effects covariates (female educational attainment and contraceptive met need) and random intercepts for geographical regions. Projected TFRs were then computed for each calendar year as the sum of single-year ASFRs across age groups. The reference forecast is our estimate of the most likely fertility future given the model, past fertility, forecasts of covariates, and historical relationships between covariates and fertility. We additionally produced forecasts for multiple alternative scenarios in each location: the UN Sustainable Development Goal (SDG) for education is achieved by 2030; the contraceptive met need SDG is achieved by 2030; pro-natal policies are enacted to create supportive environments for those who give birth; and the previous three scenarios combined. Uncertainty from past data inputs and model estimation was propagated throughout analyses by taking 1000 draws for past and present fertility estimates and 500 draws for future forecasts from the estimated distribution for each metric, with 95% uncertainty intervals (UIs) given as the 2·5 and 97·5 percentiles of the draws. To evaluate the forecasting performance of our model and others, we computed skill values—a metric assessing gain in forecasting accuracy—by comparing predicted versus observed ASFRs from the past 15 years (2007–21). A positive skill metric indicates that the model being evaluated performs better than the baseline model (here, a simplified model holding 2007 values constant in the future), and a negative metric indicates that the evaluated model performs worse than baseline. Findings: During the period from 1950 to 2021, global TFR more than halved, from 4·84 (95% UI 4·63–5·06) to 2·23 (2·09–2·38). Global annual livebirths peaked in 2016 at 142 million (95% UI 137–147), declining to 129 million (121–138) in 2021. Fertility rates declined in all countries and territories since 1950, with TFR remaining above 2·1—canonically considered replacement-level fertility—in 94 (46·1%) countries and territories in 2021. This included 44 of 46 countries in sub-Saharan Africa, which was the super-region with the largest share of livebirths in 2021 (29·2% [28·7–29·6]). 47 countries and territories in which lowest estimated fertility between 1950 and 2021 was below replacement experienced one or more subsequent years with higher fertility; only three of these locations rebounded above replacement levels. Future fertility rates were projected to continue to decline worldwide, reaching a global TFR of 1·83 (1·59–2·08) in 2050 and 1·59 (1·25–1·96) in 2100 under the reference scenario. The number of countries and territories with fertility rates remaining above replacement was forecast to be 49 (24·0%) in 2050 and only six (2·9%) in 2100, with three of these six countries included in the 2021 World Bank-defined low-income group, all located in the GBD super-region of sub-Saharan Africa. The proportion of livebirths occurring in sub-Saharan Africa was forecast to increase to more than half of the world's livebirths in 2100, to 41·3% (39·6–43·1) in 2050 and 54·3% (47·1–59·5) in 2100. The share of livebirths was projected to decline between 2021 and 2100 in most of the six other super-regions—decreasing, for example, in south Asia from 24·8% (23·7–25·8) in 2021 to 16·7% (14·3–19·1) in 2050 and 7·1% (4·4–10·1) in 2100—but was forecast to increase modestly in the north Africa and Middle East and high-income super-regions. Forecast estimates for the alternative combined scenario suggest that meeting SDG targets for education and contraceptive met need, as well as implementing pro-natal policies, would result in global TFRs of 1·65 (1·40–1·92) in 2050 and 1·62 (1·35–1·95) in 2100. The forecasting skill metric values for the IHME model were positive across all age groups, indicating that the model is better than the constant prediction. Interpretation: Fertility is declining globally, with rates in more than half of all countries and territories in 2021 below replacement level. Trends since 2000 show considerable heterogeneity in the steepness of declines, and only a small number of countries experienced even a slight fertility rebound after their lowest observed rate, with none reaching replacement level. Additionally, the distribution of livebirths across the globe is shifting, with a greater proportion occurring in the lowest-income countries. Future fertility rates will continue to decline worldwide and will remain low even under successful implementation of pro-natal policies. These changes will have far-reaching economic and societal consequences due to ageing populations and declining workforces in higher-income countries, combined with an increasing share of livebirths among the already poorest regions of the world. Funding: Bill & Melinda Gates Foundation

    Petrogenesis of Granitoids, U-Pb zircon geochronology, Sr-Nd Petrogenesis of granitoids, U-Pb zircon geochronology, Sr-Nd isotopic characteristics, and important occurrence of Tertiary mineralization within the Lut block, eastern Iran

    No full text
    Tertiary intrusive granitoids within the Lut block in the Khorasan Razavi and South Khorasan provinces are mainly sub-volcanic with porphyry texture and their composition varies from granite to diorite but monzonite is dominant. With the exception of Hired, these are classified as belonging to the magnetite-series of I-type granitoids. Chemically, these rocks are meta-aluminous. Those with mineralization are K-rich and those without mineralization such as Najmabad are Na-rich. All intrusive rocks plot in the field of calc-alkaline to adakite except Najmabad that plot in the adakite field. Based on low content of Nb (30), low initial 87Sr/86Sr (17 ppm), low ratio of Zr/Nb (0.707) and low initial εNd value (-3), magmas in the Kaybar-Kuh were more contaminated in the continental crust. Based on depletion in HREE and high ratio of (La/Yb)N (17-23), magma in Najmabad originated in the deep region in which garnet was present. Based on REE pattern and ration of Eu/Eu* (0.8-1), intrusive rocks within Maherabad, Khoopik, Chah-Shaljami, Kuh Shah and Dehsalm are calc-alkaline and their magma formed in an oxidant condition whereas Kaybar Kuh magma with low ratio of Eu/Eu* (<0.8) was contaminated in the continental crust under reduced conditions. The age of these granitoids is between Middle Eocene and Lower Oligocene. Kaybar-Kuh (43.3 Ma) is situated in the north and Chah-Shaljami (33.3 Ma) in the south. The initial 87Sr/86Sr ratios decrease from north (0.7077) to south (0.7047) as the age decreases. εNd of Maherabad, Khoopik, Dehsalm, and Chah-Shaljami granitoids is between +0.5 and +2.49 and the initial 87Sr/86Sr ratio is less than 0.7055. The age of the source rock (TDM, which was calculated based on Sm-Nd isotopes) indicates that these magma originated from oceanic crust with different ages. Kaybar-Kuh originated from the oldest oceanic crust (840 Ma) and was contaminated more in continental crust, but Najmabad originated from a younger oceanic crust (360 Ma) with minor contamination. Dehsalm and Chah-Shaljami magma which had some differences with Maherabad and Khoopik, originated from oceanic crust of 200 Ma. The period between 42 and 33 Ma (Middle Eocene to Lower Oligocene) is the most important stage of mineralization in eastern Iran especially in South Khorasan. Some of the major systems, which are identified so far are: porphyry Cu-Au, reduced intrusive related Au, high sulfidation Au, Fe- skarn, Pb-Zn-Sb vein and IOCG deposits. Granitoid rocks formed between 42 and 33 Ma within the Lut block and northern area has great potential for exploring porphyry Cu-Au, IOCG, Fe, Pb-Zn, Au etc

    A positive test of East Antarctica-Laurentia juxtaposition within the Rodinia supercontinent.

    No full text
    The positions of Laurentia and other landmasses in the Precambrian supercontinent of Rodinia are controversial. Although geological and isotopic data support an East Antarctic fit with western Laurentia, alternative reconstructions favor the juxtaposition of Australia, Siberia, or South China. New geologic, age, and isotopic data provide a positive test of the juxtaposition with East Antarctica: Neodymium isotopes of Neoproterozoic rift-margin strata are similar; hafnium isotopes of ∼1.4-billion-year-old Antarctic-margin detrital zircons match those in Laurentian granites of similar age; and a glacial clast of A-type granite has a uraniun-lead zircon age of ∼1440 million years, an epsilon-hafnium initial value of +7, and an epsilon-neodymium initial value of +4. These tracers indicate the presence of granites in East Antarctica having the same age, geochemical properties, and isotopic signatures as the distinctive granites in Laurentia

    Heat blocking gallium arsenide solar cells

    No full text
    The solar cell industry is witnessing an era of unprecedented growth and this trend is set to continue for the foreseeable future. Here we describe a heat reflection pigment-coated single-junction gallium arsenide solar cell that is capable of reflecting heat-inducing near-infrared radiation. The cell maintains its performance better than non-coated cells when exposed to infrared-rich radiant flux. In situations where solar cells get heated mainly from incident infrared radiation, these cells exhibit superior performance. The heat reflecting pigment, cell structure, coating process and cell performance have been describe
    corecore