419 research outputs found
Nitric oxide modulates expression of extracellular matrix genes linked to fibrosis in kidney mesangial cells
Mesangial cells are thought to be important mediators of glomerular inflammation and fibrosis. Studies have established a direct role for nitric oxide (NO) in the regulation of gene expression in mesangial cells. Representational difference analysis was used to investigate changes in gene expression elicited by the treatment of S-nitroso-L-glutathione in rat mesangial cells. Seven upregulated and 11 downregulated genes were identified. Four out of 11 downregulated genes (connective tissue growth factor, thrombospondin-1, collagen type I all and collagen type I alpha 2) are known to be linked to inflammation and fibrosis. Results were verified across species in mesangial cells treated with a series of NO donors using Northern blot analysis, quantitative real-time PCR and protein analysis methods. Induction of endogenous NO production by cytokine stimulation also triggered regulation of the genes. One example gene, connective tissue growth factor, was studied at the promoter level. Promoter-reporter gene studies in mesangial cells demonstrated that NO acts at the transcriptional level to suppress gene expression. Our results reveal a complex role of NO in regulating gene expression in mesangial cells and suggest an antifibrotic potential for NO
Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices
In continuum mechanics, the non-centrosymmetric micropolar theory is usually
used to capture the chirality inherent in materials. However when reduced to a
two dimensional (2D) isotropic problem, the resulting model becomes non-chiral.
Therefore, influence of the chiral effect cannot be properly characterized by
existing theories for 2D chiral solids. To circumvent this difficulty, based on
reinterpretation of isotropic tensors in a 2D case, we propose a continuum
theory to model the chiral effect for 2D isotropic chiral solids. A single
material parameter related to chirality is introduced to characterize the
coupling between the bulk deformation and the internal rotation which is a
fundamental feature of 2D chiral solids. Coherently, the proposed continuum
theory is also derived for a triangular chiral lattice from a homogenization
procedure, from which the effective material constants of the lattice are
analytically determined. The unique behavior in the chiral lattice is
demonstrated through the analyses of a static tension problem and a plane wave
propagation problem. The results, which cannot be predicted by the non-chiral
model, are validated by the exact solution of the discrete model.Comment: 33 pages, 7 figure
Stability of Repulsive Bose-Einstein Condensates in a Periodic Potential
The cubic nonlinear Schr\"odinger equation with repulsive nonlinearity and an
elliptic function potential models a quasi-one-dimensional repulsive dilute gas
Bose-Einstein condensate trapped in a standing light wave. New families of
stationary solutions are presented. Some of these solutions have neither an
analog in the linear Schr\"odinger equation nor in the integrable nonlinear
Schr\"odinger equation. Their stability is examined using analytic and
numerical methods. All trivial-phase stable solutions are deformations of the
ground state of the linear Schr\"odinger equation. Our results show that a
large number of condensed atoms is sufficient to form a stable, periodic
condensate. Physically, this implies stability of states near the Thomas-Fermi
limit.Comment: 12 pages, 17 figure
Pseudopotential model of ultracold atomic collisions in quasi-one- and two-dimensional traps
We describe a model for s-wave collisions between ground state atoms in
optical lattices, considering especially the limits of quasi-one and two
dimensional axisymmetric harmonic confinement. When the atomic interactions are
modelled by an s-wave Fermi-pseudopotential, the relative motion energy
eigenvalues can easily be obtained. The results show that except for a bound
state, the trap eigenvalues are consistent with one- and two- dimensional
scattering with renormalized scattering amplitudes. For absolute scattering
lengths large compared with the tightest trap width, our model predicts a novel
bound state of low energy and nearly-isotropic wavefunction extending on the
order of the tightest trap width.Comment: 9 pages, 8 figures; submitted to Phys. Rev.
Tunable variation of optical properties of polymer capped gold nanoparticles
Optical properties of polymer capped gold nanoparticles of various sizes
(diameter 3-6 nm) have been studied. We present a new scheme to extract size
dependent variation of total dielectric function of gold nanoparticles from
measured UV-Vis absorption data. The new scheme can also be used, in principle,
for other related systems as well. We show how quantum effect, surface atomic
co - ordination and polymer - nanoparticle interface morphology leads to a
systematic variation in inter band part of the dielectric function of gold
nanoparticles, obtained from the analysis using our new scheme. Careful
analysis enables identification of the possible changes to the electronic band
structure in such nanoparticles.Comment: 13 pages,7 figures, 1 tabl
Continuous Spectrum of Automorphism Groups and the Infraparticle Problem
This paper presents a general framework for a refined spectral analysis of a
group of isometries acting on a Banach space, which extends the spectral theory
of Arveson. The concept of continuous Arveson spectrum is introduced and the
corresponding spectral subspace is defined. The absolutely continuous and
singular-continuous parts of this spectrum are specified. Conditions are given,
in terms of the transposed action of the group of isometries, which guarantee
that the pure-point and continuous subspaces span the entire Banach space. In
the case of a unitarily implemented group of automorphisms, acting on a
-algebra, relations between the continuous spectrum of the automorphisms
and the spectrum of the implementing group of unitaries are found. The group of
spacetime translation automorphisms in quantum field theory is analyzed in
detail. In particular, it is shown that the structure of its continuous
spectrum is relevant to the problem of existence of (infra-)particles in a
given theory.Comment: 31 pages, LaTeX. As appeared in Communications in Mathematical
Physic
Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps
We consider the problem of cold atomic collisions in tight traps, where the
absolute scattering length may be larger than the trap size. As long as the
size of the trap ground state is larger than a characteristic length of the van
der Waals potential, the energy eigenvalues can be computed self-consistently
from the scattering amplitude for untrapped atoms. By comparing with the exact
numerical eigenvalues of the trapping plus interatomic potentials, we verify
that our model gives accurate eigenvalues up to milliKelvin energies for single
channel s-wave scattering of Na atoms in an isotropic harmonic trap,
even when outside the Wigner threshold regime. Our model works also for
multi-channel scattering, where the scattering length can be made large due to
a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review
Diffusion in supersonic, turbulent, compressible flows
We investigate diffusion in supersonic, turbulent, compressible flows.
Supersonic turbulence can be characterized as network of interacting shocks. We
consider flows with different rms Mach numbers and where energy necessary to
maintain dynamical equilibrium is inserted at different spatial scales. We find
that turbulent transport exhibits super-diffusive behavior due to induced bulk
motions. In a comoving reference frame, however, diffusion behaves normal and
can be described by mixing length theory extended into the supersonic regime.Comment: 11 pages, incl. 5 figures, accepted for publication in Physical
Review E (a high-resolution version is available at
http://www.aip.de./~ralf/Publications/p21.abstract.html
- …