15 research outputs found

    Observations of Low Frequency Solar Radio Bursts from the Rosse Solar-Terrestrial Observatory

    Full text link
    The Rosse Solar-Terrestrial Observatory (RSTO; www.rosseobservatory.ie) was established at Birr Castle, Co. Offaly, Ireland (53 05'38.9", 7 55'12.7") in 2010 to study solar radio bursts and the response of the Earth's ionosphere and geomagnetic field. To date, three Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometers have been installed, with the capability of observing in the frequency range 10-870 MHz. The receivers are fed simultaneously by biconical and log-periodic antennas. Nominally, frequency spectra in the range 10-400 MHz are obtained with 4 sweeps per second over 600 channels. Here, we describe the RSTO solar radio spectrometer set-up, and present dynamic spectra of a sample of Type II, III and IV radio bursts. In particular, we describe fine-scale structure observed in Type II bursts, including band splitting and rapidly varying herringbone features

    Radio Bursts Associated with Flare and Ejecta in the 13 July 2004 Event

    Full text link
    We investigate coronal transients associated with a GOES M6.7 class flare and a coronal mass ejection (CME) on 13 July 2004. During the rising phase of the flare, a filament eruption, loop expansion, a Moreton wave, and an ejecta were observed. An EIT wave was detected later on. The main features in the radio dynamic spectrum were a frequency-drifting continuum and two type II bursts. Our analysis shows that if the first type II burst was formed in the low corona, the burst heights and speed are close to the projected distances and speed of the Moreton wave (a chromospheric shock wave signature). The frequency-drifting radio continuum, starting above 1 GHz, was formed almost two minutes prior to any shock features becoming visible, and a fast-expanding piston (visible as the continuum) could have launched another shock wave. A possible scenario is that a flare blast overtook the earlier transient, and ignited the first type II burst. The second type II burst may have been formed by the same shock, but only if the shock was propagating at a constant speed. This interpretation also requires that the shock-producing regions were located at different parts of the propagating structure, or that the shock was passing through regions with highly different atmospheric densities. This complex event, with a multitude of radio features and transients at other wavelengths, presents evidence for both blast-wave-related and CME-related radio emissions.Comment: 14 pages, 6 figures; Solar Physics Topical Issue, in pres

    Interchange Slip-Running Reconnection and Sweeping SEP Beams

    Get PDF
    We present a new model to explain how particles (solar energetic particles; SEPs), accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be traveling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radii, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth

    Radio Observations of the January 20, 2005 X-Class Event

    Full text link
    We present a multi-frequency and multi-instrument study of the 20 January 2005 event. We focus mainly on the complex radio signatures and their association with the active phenomena taking place: flares, CMEs, particle acceleration and magnetic restructuring. As a variety of energetic particle accelerators and sources of radio bursts are present, in the flare-ejecta combination, we investigate their relative importance in the progress of this event. The dynamic spectra of {Artemis-IV-Wind/Waves-Hiras with 2000 MHz-20 kHz frequency coverage, were used to track the evolution of the event from the low corona to the interplanetary space; these were supplemented with SXR, HXR and gamma-ray recordings. The observations were compared with the expected radio signatures and energetic-particle populations envisaged by the {Standard Flare--CME model and the reconnection outflow termination shock model. A proper combination of these mechanisms seems to provide an adequate model for the interpretation of the observational data.Comment: Accepted for publication in Solar Physic

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Sources of SEP Acceleration during a Flare-CME Event

    Full text link
    A high-speed halo-type coronal mass ejection (CME), associated with a GOES M4.6 soft X-ray flare in NOAA AR 0180 at S12W29 and an EIT wave and dimming, occurred on 9 November 2002. A complex radio event was observed during the same period. It included narrow-band fluctuations and frequency-drifting features in the metric wavelength range, type III burst groups at metric--hectometric wavelengths, and an interplanetary type II radio burst, which was visible in the dynamic radio spectrum below 14 MHz. To study the association of the recorded solar energetic particle (SEP) populations with the propagating CME and flaring, we perform a multi-wavelength analysis using radio spectral and imaging observations combined with white-light, EUV, hard X-ray, and magnetogram data. Velocity dispersion analysis of the particle distributions (SOHO and Wind in situ observations) provides estimates for the release times of electrons and protons. Our analysis indicates that proton acceleration was delayed compared to the electrons. The dynamics of the interplanetary type II burst identify the burst source as a bow shock created by the fast CME. The type III burst groups, with start times close to the estimated electron release times, trace electron beams travelling along open field lines into the interplanetary space. The type III bursts seem to encounter a steep density gradient as they overtake the type II shock front, resulting in an abrupt change in the frequency drift rate of the type III burst emission. Our study presents evidence in support of a scenario in which electrons are accelerated low in the corona behind the CME shock front, while protons are accelerated later, possibly at the CME bow shock high in the corona.Comment: Solar Physics, November 2007, in pres
    corecore