1,160 research outputs found

    High quality YBa2Cu3Ox ultra-thin films and Y/Pr/Y multilayers made by a modified RF-magnetron sputtering technique

    Get PDF
    High quality ĉ-axis oriented thin and ultra-thin films have been grown in situ on (100) surfaces of ZrO2, SrTiO3 and MgO. Sharp transitions were observed with Tc,zero of 87–91 K for films thicker than 70 Å. On atomically polished MgO substrates films as thin as 15 Å revealed a full transition to superconductivity above 45.5 K. The critical current density at 77 K was found to be strongly dependent on film thickness. A maximum value was found for a 100 Å film with 8 × 106A/cm2 at 77 K. Also, YBCO/PBCO/YBCO multilayer thin films have been fabricated in situ by the same technique. The epitaxy is maintained throughout the whole multilayer system. The superconducting properties of YBa2Cu3Ox layers do not change compared to single layers. Interdiffusion and possible chemical reaction close to the interfaces can be neglected.\ud \u

    Controlled preparation of all high-Tc SNS-type edge junctions and DC SQUIDs

    Get PDF
    High-Tc SNS-type Josephson junctions and DC SQUIDs were successfully fabricated using hetero-epitaxially grown multilayers of YBa2Cu3Ox and PrBa2Cu3Ox. These layers are c-axis oriented and hence edges of the multilayers give rise to a current flow in the ab-plane between the electrodes of a Josephson junction. The necessary structuring was done by Ar ion beam etching. The individual junctions exhibit a supercurrent up to 80 K. The IcRn-product of these junctions usually has a lower limit of 8 mV at 4.2 K. Voltage modulation of the first DC SQUIDs can be observed up to 66 K. Details on the fabrication and measurements are presented

    Preparation and properties of all high Tc SNS-type edge DC SQUIDs

    Get PDF
    High-Tc SNS-type Josephson junctions and DC SQUIDs were successfully fabricated using hetero-epitaxially grown multilayers of YBa2Cu3Ox and PrBa2 Cu3O. These layers are c-axis oriented, and hence edges of the multilayers give rise to a current flow in the ab-plane between the electrodes of a Josephson junction. The necessary structuring was done by Ar ion beam etching. The individual junctions exhibit a supercurrent up to 80 K. The IcRn product of these junctions usually has a lower limit of 8 mV at 4.2 K. Voltage modulation of the first DC SQUIDs can be observed up to 66 K. The voltage modulation for various bias currents investigated at 4.2 K noise measurements were performed. Details on the fabrication and measurements are presente

    Epitaxial multilayers of YBa2Cu3Ox/PrBa2Cu3Ox/YBa2Cu3Ox

    Get PDF
    Heteroepitaxial multilayers of YBa2Cu3Ox/PrBa2Cu3Ox/YBa2Cu3Ox have been made by sputtering. No degradation of the transition temperature and the critical current density due to the presence of the PrBa2Cu3Ox layer could be observed. By using high-resolution transmission electron microscopy the atomic details of the interfaces and the defect structures have been studied. These films showed a perfectly stacked lattice just above the interface between film and substrate. The orientation of the c-axis perpendicular to the substrate was fairly perfect. The structural faults are mainly distributed in the middle and overlying layers. The dominant defects in our films seems to be stacking faults which give rise to nano-sized coherent anti-phase domains with the 1-2-3 structure. Rutherford backscattering spectroscopy, secondary ion mass spectroscopy, and scanning Auger microscopy were used to examine the interdiffusion between layers. Within the experimental resolution of 7 nm no interdiffusion is visible between YBa2Cu3Ox and PrBa2Cu3Ox layers

    Transport processes and reduction of I<sub>c</sub>R<sub>n</sub> product in YBa<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub>/PrBa<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub>/YBa<sub>2</sub>Cu<sub>3</sub>O<sub>x</sub> ramp-type Josephson junctions

    Get PDF
    The mechanisms of current passage and the causes of IcRn (critical-current normal-resistance) product reduction of YBCO/PBCO/YBCO ramp-type junctions are analyzed. At PBCO (PrBa2Cu3Ox ) barrier thicknesses L=8-20 nm the junction characteristics are determined by the thickness of the PBCO barrier and its nature. The boundary resistance and depression of the YBCO (YBa2Cu3Ox) superconducting parameters near the interface do not strongly affect the junction parameters. The behaviour of the YBCO/PBCO/YBCO junctions cannot be described by simple SNS (superconductor-normal metal-superconductor) weak-link or SIS (superconductor-insulator-superconductor) tunnel models. A strong pair-breaking effect and a one-center inelastic tunneling process are taken into account to explain the Josephson and normal state characteristics of these junction

    Optimization of protein extraction from tree peony (Paeonia suffruticosa Andr.) seed using response surface methodology

    Get PDF
    Optimization of extraction ratio (ER) of tree peony seed protein (TPSP) was investigated using response surface methodology (RSM). The second-degree equation for ER of TPSP had high coeffi cient (0.9625) of determination. The probability (P) value of regression model signifi cance was less than 0.001 by analysis of central composite rotatable design. Relationships of ER to pH, liquid/solid ratio, squares of all factors, and cross-product factors (x2x3, x2x4, x3x4) were signifi cant (P1x2, x1x3, x1x4) were not signifi cant factors (P>0.05). Optimum extraction conditions were 3.42 h, pH 9.50, 50.80 ºC, and 9.54 ml g–1 of liquid/solid ratio with the maximum ER (43.60%) . SDS-PAGE indicated TPSP had mainly four proteins (180, 100, 60, and 35 kDa) with four subunits of 60, 48, 38, and 23 kDa. TPSP had a good amino acid composition with abundant essential amino acids (39.76%) determined by amino acid analysis

    Uncovering the chemistry of C-C bond formation in C-nucleoside biosynthesis : crystal structure of a C -glycoside synthase/PRPP complex

    Get PDF
    Authors thank the Diamond Light Source for beam time allocation and beam line staff for assistance with data collection. Funding for these studies was provided by BBSRC (BB/T006161/1 & BB/T006188/1 to J. H. N. & N. G. J. R., respectively), and the National Institutes of Health (R01 GM129793 to V. d. C.-L.)The enzyme ForT catalyzes C–C bond formation between 5′-phosphoribosyl-1′-pyrophosphate (PRPP) and 4-amino-1H-pyrazole-3,5-dicarboxylate to make a key intermediate in the biosynthesis of formycin A 5′-phosphate by Streptomyces kaniharaensis. We report the 2.5 Å resolution structure of the ForT/PRPP complex and locate active site residues critical for PRPP recognition and catalysis.Publisher PDFPeer reviewe
    • …
    corecore