28 research outputs found
Sorghum grain as human food in Africa: relevance of content of starch and amylase activities
Sorghum is a staple food grain in many semi-arid and tropic areas of the world, notably in Sub-Saharan Africa because of its good adaptation to hard environments and its good yield of production. Among important biochemical components for sorghum processing are levels of starch (amylose and amylopectin) and starch depolymerizing enzymes. Current research focus on identifying varieties meeting specific agricultural and food requirements from the great biodiversity of sorghums to insure food security. Results show that some sorghums are rich sources of micronutrients (minerals and vitamins) and macronutrients (carbohydrates, proteins and fat). Sorghum has a resistant starch, which makes it interesting for obese and diabetic people. In addition, sorghum may be an alternative food for people who are allergic to gluten. Malts of some sorghum varieties display a-amylase and ß-amylase activities comparable to those of barley, making them useful for various agro-industrial foods. The feature of sorghum as a food in developing as well as in developed countries is discussed. A particular emphasis is made on the impact of starch and starch degrading enzymes in the use of sorghum for some African foods, e.g. “tô”, thin porridges for infants, granulated foods “couscous”, local beer “dolo”, as well agro-industrial foods such as lager beer and bread.Keywords: sorghum, a-amylase, b-amylase, starch, infant porridge, beer, couscous, dolo, tô, brea
Concurrency and Communication: Lessons from the SHIM Project
Describing parallel hardware and software is difficult, especially in an embedded setting. Five years ago, we started the shim project to address this challenge by developing a programming language for hardware/software systems. The resulting language describes asynchronously running processes that has the useful property of scheduling-independence: the i/o of a shim program is not affected by any scheduling choices. This paper presents a history of the shim project with a focus on the key things we have learned along the way
Engineering of microheterogeneity-resistant p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens
AbstractBy site-directed mutagenesis, Cys-116 was converted to Ser-116 in p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens. In contrast to wild-type enzyme, the C116S mutant is no longer susceptible to oxidation by hydrogen peroxide and shows no reactivity towards 5,5'-dithiobis(2-nitrobenzoate). Crystals of the C116S mutant are isomorphous with the crystal form of wild-type enzyme. A difference electron density confirms the mutation made
Recommended from our members
Analysis of metals in solution using electrospray ionization mass spectrometry
Electrospray ionization-mass spectrometry (ES-MS) has gained most of its recent attention because of the ability to produce multiply charged ions from very large biomolecules making them amenable to analysis by most modern mass spectrometers. However, ES-MS is equally well suited for compounds of low or moderate molecular weight that are difficult to volatilize intact by others methods. Moreover, the early work of Fenn and co-workers (1,2) and recent reports by Kebarle and co-workers (3,4) attest to the applicability of ES-MS to the study of the gas-phase chemistry of multiply solvated or coordinated metal ions. The utility of ES-MS for the analysis of metals in solution derives in part from the facility with which the metal ions are solvated by or form complexes with the ES solvent or other reagents added to the solvent. Solvation and complexation can be a hindrance, however, in the analytical application of ES-MS to the analysis of metals in solution, especially solutions of metals in water. The data presented here demonstrate that many of the problems in the ES-MS analysis of metals can be overcome by complexing the metals with crown ethers and/or extracting the metals from water into an organic phase using crown ethers. 5 refs., 4 figs
Rotary combustion device
Rotary combustion device (1) with rotary combustion chamber (4). Specific measures are taken to provide ignition of a combustible mixture. It is proposed that a hollow tube be provided coaxially with the axis of rotation (6), so that a small part of the mixture is guided into the combustion chamber. At the position of said axis of rotation (6) the mixture is ignited (8), and said ignition extends to the combustion chamber (4). For stabilization of the flame in the combustion chamber flame stabilization means (17, 27, 37, 47, 57, 67) are used. The flame stabilization means can comprise heat distribution means, (37, 47, 57) such as spokes, ribs, scales and the like. It is also possible to supply external heat (17). Another option is to provide a radiator (67).; In order to promote the combustion, it is also possible to arrange for the combustion chamber to extend radially relative to the axis of rotation. The combustion gas flow in this case can be directed towards the axis of rotation as well as away from the axis of rotation