22 research outputs found

    Thermodynamic properties and thermal correlation lengths of a Hubbard model with bond-charge interaction

    Full text link
    We investigate the thermodynamics of a one-dimensional Hubbard model with bond-charge interaction X using the transfer matrix renormalization group method (TMRG). Numerical results for various quantities like spin and charge susceptibilities, particle densities, specific heat and thermal correlation lengths are presented and discussed. We compare our data also to results for the exactly solvable case X/t=1 as well as to bosonisation results for weak coupling X/t << 1, which shows excellent agreement. We confirm the existence of a Tomonaga-Luttinger and a Luther-Emery liquid phase, in agreement with previous studies at zero temperature. Thermal singlet-pair correlation lengths are shown to dominate density and spin correlations for finite temperatures in certain parameter regimes.Comment: 13 pages, revte

    Concurrence and entanglement entropy in a dimerized spin-1/2 two-leg ladder

    Full text link
    We consider the isotropic spin-1/2 two-leg ladders with the dominant spatially modulated rung exchanges. We study the effect of a uniform magnetic field on the ground state phase diagram of the model using the perturbation theory and the numerical Lanczos method. The ground state phase diagram consists of two gapless Luttinger liquid (LL) and three gapped phases. Numerically, we calculate the concurrence between two spins and entanglement entropy between legs. Numerical experiment shows that in principle the gapless LL phases are different. In the first LL phase, only spins on rungs are entangled, but in the second LL phase the spins on legs are long-distance entangled. Therefore the concurrence between spins on legs can be considered as a function to distinguish the LL phases.Comment: 7 pages, 7 figure

    Finite-temperature properties of the Hubbard chain with bond-charge interaction

    Get PDF
    We investigate the one-dimensional Hubbard model with an additional bond-charge interaction, recently considered in the description of compounds that exhibit strong 1D features above the temperature of ordered phases. The partition function of the model is exactly calculated for a value of the bond-charge coupling; the behavior of the specific heat and spin susceptibility as a function of temperature is derived at arbitrary filling, and particularly discussed across the occurring metal-insulator transition. The results show that the bond-charge terms weaken the spin excitations of the system.Comment: 5 pages, 3 eps figure

    Ground-state phase diagram of the one-dimensional half-filled extended Hubbard model

    Get PDF
    We revisit the ground-state phase diagram of the one-dimensional half-filled extended Hubbard model with on-site (U) and nearest-neighbor (V) repulsive interactions. In the first half of the paper, using the weak-coupling renormalization-group approach (g-ology) including second-order corrections to the coupling constants, we show that bond-charge-density-wave (BCDW) phase exists for U \approx 2V in between charge-density-wave (CDW) and spin-density-wave (SDW) phases. We find that the umklapp scattering of parallel-spin electrons disfavors the BCDW state and leads to a bicritical point where the CDW-BCDW and SDW-BCDW continuous-transition lines merge into the CDW-SDW first-order transition line. In the second half of the paper, we investigate the phase diagram of the extended Hubbard model with either additional staggered site potential \Delta or bond alternation \delta. Although the alternating site potential \Delta strongly favors the CDW state (that is, a band insulator), the BCDW state is not destroyed completely and occupies a finite region in the phase diagram. Our result is a natural generalization of the work by Fabrizio, Gogolin, and Nersesyan [Phys. Rev. Lett. 83, 2014 (1999)], who predicted the existence of a spontaneously dimerized insulating state between a band insulator and a Mott insulator in the phase diagram of the ionic Hubbard model. The bond alternation \delta destroys the SDW state and changes it into the BCDW state (or Peierls insulating state). As a result the phase diagram of the model with \delta contains only a single critical line separating the Peierls insulator phase and the CDW phase. The addition of \Delta or \delta changes the universality class of the CDW-BCDW transition from the Gaussian transition into the Ising transition.Comment: 24 pages, 20 figures, published versio

    Meissner effect in a bosonic ladder

    Full text link
    We investigate the effect of a magnetic field on a bosonic ladder. We show that such a system leads to the one dimensional equivalent of a vortex lattice in a superconductor. We investigate the physical properties of the vortex phase, such as vortex density and vortex correlation functions and show that magnetization has plateaus for some commensurate values of the mag netic field. The lowest plateau corresponds to a true Meissner to vortex transition at a critical field Hc1H_{c1} that exists although the system has no long range superconducting order. Implications for experimental realizations such as Josephson junction arrays are discussed.Comment: 4 pages, 2 Encapsulated Postscript figures, RevTe

    Pairing and Density Correlations of Stripe Electrons in a Two-Dimensional Antiferromagnet

    Full text link
    We study a one-dimensional electron liquid embedded in a 2D antiferromagnetic insulator, and coupled to it via a weak antiferromagnetic spin exchange interaction. We argue that this model may qualitatively capture the physics of a single charge stripe in the cuprates on length- and time scales shorter than those set by its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that describes the electronic spin sector of the stripe as that of a sine-Gordon model. We determine its phases via a perturbative renormalization group analysis. For realistic values of the model parameters we obtain a phase characterized by enhanced spin density and composite charge density wave correlations, coexisting with subleading triplet and composite singlet pairing correlations. This result is shown to be independent of the spatial orientation of the stripe on the square lattice. Slow transverse fluctuations of the stripes tend to suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correlation, breaking parity but preserving time reversal symmetry.Comment: Revtex, 28 pages incl. 5 figure

    Phase diagram of the Hubbard chain with two atoms per cell

    Full text link
    We obtain the quantum phase diagram of the Hubbard chain with alternating on-site energy at half filling. The model is relevant for the ferroelectric perovskites and organic mixed-stack donor-acceptor crystals. For any values of the parameters, the band insulator is separated from the Mott insulator by a dimer phase. The boundaries are determined accurately by crossing of excited levels with particular discrete symmetries. We show that these crossings coincide with jumps of charge and spin Berry phases with a clear geometrical meaning.Comment: 5 pages including 2 figures To be published in Phys. Rev. B (Rapid Communications

    Charge dynamics in the Mott insulating phase of the ionic Hubbard model

    Full text link
    We extend to charge and bond operators the transformation that maps the ionic Hubbard model at half filling onto an effective spin Hamiltonian. Using these operators we calculate the amplitude of the charge density wave in different dimensions. In one dimension, the charge-charge correlations at large distance d decay as 1/(d^3 ln^{3/2}d), in spite of the presence of a charge gap, as a consequence of remaining charge-spin coupling. Bond-bond correlations decay as (-1)^d 1/(d ln^{3/2}d) as in the usual Hubbard model.Comment: 4 pages, no figures, submitted to Phys. Rev. B printing errors corrected and some clarifications adde

    Elementary Excitations in Dimerized and Frustrated Heisenberg Chains

    Full text link
    We present a detailed numerical analysis of the low energy excitation spectrum of a frustrated and dimerized spin S=1/2S=1/2 Heisenberg chain. In particular, we show that in the commensurate spin--Peierls phase the ratio of the singlet and triplet excitation gap is a universal function which depends on the frustration parameter only. We identify the conditions for which a second elementary triplet branch in the excitation spectrum splits from the continuum. We compare our results with predictions from the continuum limit field theory . We discuss the relevance of our data in connection with recent experiments on CuGeO3CuGeO_{3}, NaV2O5NaV_2O_5, and (VO)2P2O7(VO)_2P_2O_7.Comment: Corrections to the text + 1 new figure, will appear in PRB (august 98

    Strongly correlated hopping and many-body bound states

    Full text link
    We study a system in which the quantum dynamics of electrons depend on the particle density in their neighborhood. For any on-site repulsive interaction, we show that the exact two-body and three-body ground states are bound states. We also discuss the finite density case in a mean-field framework and we show that the system can undergo an unusual transition from an effective attractive interaction to a repulsive one, when varying the electron density.Comment: 6 pages, 6 EPS figures, minor modifications and references adde
    corecore