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Finite-temperature properties of the Hubbard chain with bond-charge interaction

Fabrizio Dolcini and Arianna Montorsi
Dipartimento di Fisica and UnitdNFM, Politecnico di Torino, Torino 10129, Italy
(Received 5 April 2002; published 15 August 2002

We investigate the one-dimensiondD) Hubbard model with an additional bond-charge interaction, re-
cently considered in the description of compounds that exhibit strong 1D features above the temperature of
ordered phases. The partition function of the model is exactly calculated for a value of the bond-charge
coupling; the behavior of the specific heat and spin susceptibility as a function of temperature is derived at
arbitrary filling, and particularly discussed across the occurring metal-insulator transition. The results show that
the bond-charge terms weaken the spin excitations of the system.
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[. INTRODUCTION achieved yet. This is mainly due to the fact that, at very low
temperatures, 2D and 3D couplings between organic chains
In recent years the discovery of materials that in some)ecome relevar(see, for instance, the phase diagram in Ref.
energy regimes exhibit a strong one-dimensicdd) char-  9); this explains, in pass, the occurrence of ordered phases in
acter has renewed the investigation of models of interactingn€se compounds. As a consequence, a one-dimensional pic-
electrons in low-dimensional lattices. Within this context, anture for these materials is reasonable only above some refer-
increasing interest is nowadays devoted to the effects of urnce temperaturef the order of 18 K), which of course
conventional correlation mechanisms, different from the@lso depends on the pressure. In order to compare theoretical
usual charge-charge interaction terms between electrons ¢gsults with experimental observations on Bechgaard salts, it
the same sitéU) and on neighboring sited/). In particular, S therefore necessary to examine such models at higher tem-
models have been considetedwhich also account for the Perature, or to test whether the low-temperature range tract-
modification of the electron hopping motion by the presencéPlé through bosonization has a nonvanishing overlap with
of particles with opposite spin&orrelated hopping such ~ the 1D region of theP-T phase diagram of such materials.
kind of terms are also calledond-chargenteractions, since The purpose of the present paper is to investigate the

they actually describe the interaction of charges located oRroperties for a model of bond-charge interaction at finite
bonds with those that are located on the lattice sites. and arbitrary temperature. In particular, for one value of the

The first field of application of such kind of models in bond-charge coupling, we shall derive the exact behavior of
condensed matter was the descriptionmoélectrons in con- thermodynamic observables such as the specific heat and the
ducting polymers such as polyacetylene (¢Hn particular spin susceptibility, ar_ld discuss how the correlated hopping
it has been fourftithat, according to the strength of bond- {€MS affect the obtained shape.

charge coupling the dimerization of the polymeric chain can
be enhanced or destroyed_ II. MODEL: SPECTRUM AND PARTITION FUNCTION

More recently, bond-charge models have been consitlered bond-charge model we shall discuss reads as follows:
to explain the rich temperature-pressure phase diagram

observed for the Bechgaard sdltse., the linear chain or- L

ganic compounds such as tetramethyletraselenafulvalene F=—t >, [1—x(Njz+nj,)]cl cj,+U>, nin;,

(TMTSF),X and tetramethytetrathiafulvalene (TMTTR), (Li)eo =1

whereX=CIO, or Br. Indeed, for these materials it has been L L

noticed that the spin-density way8DW) and the supercon- —h> (ﬁm_ ﬁu) > (ﬁiT"' ﬁu). (1)
=51 =1

ducting (SC) phases are adjacent, the symmetry of the SC
order parameter being gf-wave character, rather thash | Eq. (1) ¢

lo?

Ci, are fermionic creation and annihilation

: erators on a one-dimensional chain(gdy (TMTTF),X.
presence of bond-charge terrwhose coupling constants Let each sitd @y ( )2

may depend on the pressueduld explain the interplay be- . . . —
twe)(/an tFr)lep-wave Sg and)J the SDVF\)/ orders, witr? vgrying L be the total number of sitesi=1,| is the spin labelo
pressure and electron densiy(filling ). denotes its oppositemjgzc;rocj(, is the electron charge with
This idea has yielded a remarkable effort to the investigaspin o, and(i, j) stands for neighboring sites. At each site
tion of electron models with correlated hopping terms,i four possible states are possible, which we shall denote
through both analytical and numerical methods. In particularas follows: |1);=c[,|0), ||)i=cl||0), [0);=[0), [LT)
results have been obtained for the ground étges well as =cﬂcﬁ|0>.
for the low-temperature limit, by the method of The term in the first line of Eq(l) is the hopping term,
bosonizatior;® which has allowed to sketch out the phaseand, in particular, the parameterepresents the bond-charge
diagram with respect to the bond-charge coupling constantcoupling constantfor x=0 the ordinary Hubbard modélis
Despite such remarkable results, a satisfactory comparrecoveredt the three terms in the second line, respectively,
son with experimental data on Bechgaard salts has not beetescribe the usual on-site Coulomb repulsion, a possible cou-
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pling to an external magnetic field, and the chemical potenpreserved; the Hamiltonian can therefore be diagonalized

tial. Notice that, similarly to Refs. 2, 7, and 8 we do not within each subspace of given set of sequences. In the case

consider here the neighboring site charge-charge interactioof model (1), the sequenceS, and Sg of A species and

V, since its presence can be accounted for—in a firsspecies are separately preserved. Moreover, since in this case

approximation—through a renormalized valuelbf one hagwo Sutherland species, each invariant subspace is in
The model1) is rather general, and is expected to capturea one-to-one correspondence with the states of a spinless

the main effects of bond-charge terms. In the present workermion (SP space; if theA species relates to occupied and

we shall provide exact results for the value, the B species to empty sites of the SF space, the form of an
effective Hamiltonian for the SF problem is that of a tight-
x=1. ) binding model, for the latter can be regarded to as a permu-

For this value of the coupling constant and for zero magneti¢ation between occupied and empty sites. The eigenvalues
field (h=0), the exact ground phase diagram as a function otherefore read-2t=;cokrf, with ni¢ quantum numbers
U and the fillingp was obtained in Refs. 7,8 for open and valued 0 or 1, ank==n/(L+1), with n=1,... L. The
periodic boundary conditions, respectively. This result wagiumber of SF equals that étspecies objectsN,) and one
derived noticing that, fox=1, (a) the term inU commutes hasZynf=N,; the number of empty sites is theMg=L
with the hopping term¢b) the hopping term naturally allows —N,. Under open boundary conditions, the specific se-
a separation of the four possible states defined above intguence is irrelevant to the action of the hopping term, so that
two groups, namelyA={|1),|1)} and B={|0),||1)}. In  all the subspaces share the same spectrum; in general this
fact, for such value of the bond-charge coupling, the hoppingloes not hold under periodic boundary conditidese, for
term actuallypermutes Astates withB states only, but nofA  instance, Refs. 8 or 34The Fock space is thus reorganized
(or B) states between themselves. in terms of states defined by specfeandB and their related

In Ref. 12 these arguments have been generalized. In trdegeneracy.
first instance, further commuting terms, other than the on-site  The inclusion of the furthefcommuting terms simply
Coulomb repulsion, such as the magnetic field, can be adddtts the degeneracy of the eigenvalues of the hopping term,
to the hopping part. Secondly, it has been pointed out that thgielding a spectrum that depends, apart fromj}, also on
properties of the hopping term of E¢l) are shared by a N ; and onN;, the latter being the eigenvalues of the op-
whole subclass of extended Hubbard models, to which th@fatOFSEiLzlﬁmﬁu and EiLzlﬁm(l—ﬁil)- The spectrum of
Hamiltonian(1) belongs. More explicitly, each model within  model (1) thus reads
this subclass identifies a specific number and set of Suther-
land species, i.e., thgroupsof states such that the Hamil- EzE({n{j};NH 'N;)
tonian only permutes the states related to different species,
leaving unaltered neighboring states that belong to the same
species; for this reason the models of this subclass have been
termed “generalized permutator$?The numbemn of Suth- S
erland species is by definition not greater than the number ovhere e,= — 2t cosk; the identitiesN; —N; =2N;—N, and
physical state¢4 in the case of a single orbijfalFor model N=N;+N;=N,—2N ; have been exploited. In the case of
(1) the Sutherland Species are 2, and preci%&nd B. Zero magnetiC field f(= 0) one recovers the spectrum that

Recognizing that a model identifiésp to some commut- Was minimized in Ref. 7 at fixed number of particles
ing term3 a set of Sutherland species greatly simplifies thel=const=0) to obtain the ground-state phase diagtems
calculation of the partition function. The crucial point that P-
allows the use obpenboundary conditions, instead of the ~ The degeneracy corresponds to the different ways one
customary periodic ones; although in the thermodynami&an realize a configuration of Sutherland species, with the
limit the bulk properties are not affected by either choice, theconstraint that the total numbeb$,; and N; appearing in
calculations are more straightforward for the former. Indeed=d. (3) remain unchanged; a simple calculation yields
in an open one-dimensional chain the set of eigenvalues of a
generalized permutator ?s equal to tha.t of an ordinary permu- g(E({n{j};N” ;NT)):(
tator betweem objects, i.e., the effective dimensionality of
the Hilbert space is reducededuction theorem As a con- The rearrangement of the Fock space deriving from the iden-

sequence of thaj[, the degen_eracy of the eigenvalues can alﬁf?cation of the Sutherland Species allows a straightforward
be computed, simply counting the ways one can realize a

. . . . .~ Talculation of the(gran-canonicalpartition function
given configuration of Sutherland species. Such observations &9 alp

=2;(ew—ﬂ+4nn@+(u-zﬂ)Nlr—thT, &)

L—N,
Ny

Na

N @

are rather general and have been used, for instance, to derive L-Np Np

the exact thermodynamics of an extended Hubbard model of  z= 2 2 2 g(E)e—BE({n{f}:N” iNp)
the above subclags We shall apply them here to obtain the {nfy N1 =0 Ny =0

partition function of the bond-charge modé) for the value .

(2).

The reduction theorem is proved when realizing that, ac-
cording to what observed above, the relative order of any
sequence of states belonging to the same species I8 the second line of Eq5) we have defined

=(1+ eB(M_U/Z))LkI[l (1+ e~ Ble—wu” (M,B,U,h)}). (5)
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0304 5.0 T with kg .
0.25. P o N 7 M
E ” —~—
0.20- 7 U/to30 - whereas folU > 4t
X 1 ,/’ ~
=107 /,'j Co~k (U-41)? KT /1)~ 32— (U—40/2KgT 8
oo.1o-./l,' p= VNBS\/;tZ(B t) . (8)
0057/ h= This is a finite-temperature effect of a metal-insulator transi-
0.00 +~—— ' : . : . . . tion, in accordance with the result obtained in Refs. 7 and 8,
0.0 0.5 1.0 1.5 2.0 where acharge gap A.=U—4t is shown to open in the
0.0 ke T/t ground state fotJ >4t. We recall that fox=0 (i.e., for the
] ordinary 1D Hubbard modglno metal-insulator transition
0.251 occurs; the bond-charge term thus seems to give rise to a
0.204 It U/t =20 finite critical valueU., increasing from O to #as the cou-
& h/t=0.01 pling x is varied from 0 to 1. It is also worth emphasizing
~, 0157 that such effect is opposite to the case of higher dimension,
O 5104 = where the bond-charge interaction is fo@irtd lower the
1 N critical value of the metal-insulator transitié@utzwiller ap-
0057 R proximation, exact in the limiD— o).
0.00 v T - T - T . ) Notice that, the ratidJ/t is expected to scale inversely
0.00 0.05 0.10 0.15 0.20 with the pressure, since the increase of the latter roughly

kg T/t enhances the hopping amplitude; as a consequence, the pas-
sage from a metallic to an insulating state with increasing

FIG. 1. The specific heat as a function of temperature. Fop: U/t is in accordance with the qualitative features of the
=1, h=0: the metal-insulator transition is revealed through theBechgaard salts phase diagr%m,
change in low-temperature behavior from linear to exponential |n the bottom Fig. 1,Cy is plotted for different filling
across the critical valué&J=4t. Bottom: Cy, for different filling values, fixed ratioJ/t=2 and magnetic fieldh/t=0.01. A
values:p=0.25 (dashed| p=0.50 (dot-dashejj p=0.75 (dotted  gharp low-temperature peak, locatedkgT~h, is observed
andp=1 (solid); a low-temperature sharp peak emerges for nonvay, emerge as soon as the magnetic field is turned on. Inter-
nishing magnetic field. estingly, the peak becomes basically filling independent as

enters the rangép,2—p], with ;: cos Y(—U/4t)/#. This

. hy= 1 | 2 coshgh amounts to the fact that, within this rangemfparticles can
p (U N = pt B T exp 28(u—U/2)’ ©®  pe added to the system only in form of singlet pairs, in ac-
cordance with the features of the phase diagram in Ref. 7.

) ) ) In addition, one can show that
B=1/(kgT) being the inverse temperature. Notice also that

the product ovek resulting in Eq.(5) is in form similar to lim IImCy/T#lim limCy/T 9)
the partition function of a tight-binding model of spinless T—0h—=0 h—0 T-0

fermions, whereu* plays the role of an effective chemical gigterently from the ordinary Hubbard model, where the two
potentlal renormalized by t_he interactidy, the magnetic  |imits are interchangeabl@. At half-filing and for |U
field h and the temperature itself. +|2h||<4t, for instance, one haBy~ yT with

k3(3 In? 2+ 72?)

Y et J{_[(U L 2[NS
By means of the partition functio5) derived in the . _
preceding section, one can calculate the thermodynamigomparing Eq(10) to Eq.(7), one can realize that E¢9)
observables from the gran potential(per sitg  holds. Similarly, the exponential behavior, occurring when
w=—lim___kgTIn Z. In doing that, we have eliminated the the gap is open, is different; namely, fi +[2h[|> 4t

chemical potential in favor of the filling through the rela- (U+2|h| —4t)2
tion p=dw/du, as usual. Cy~ kBT
In Fig. 1 we have plotted the specific héper sitg Cy, as 4yt

a function of the temperature. In particular, in the top figure

we have examined the case of half-filliige., p=1) and to be compared to Ed8).
zero magnetic fieldi{=0), for different values of the on-site In Fig. 2 the specific heat of mod€él) for x=1 is plotted
Coulomb repulsiotd. One can observe that, across the valueaside the case=0 (i.e., the Hubbard modgfor strong cou-
U/t=4, the low-temperature behavior @f, changes from pling, namely, U=8t. Notice that the ordinary Hubbard
linear to exponential; explicitly, fot) <4t we have model has a low-temperature peak, whose origiee, e.g.,

IIl. RESULTS AND DISCUSSION

(10

(KgT/t) 32— (U+2Ih|—an/2KgT

11)
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FIG. 2. The specific heat as a function of temperature for model

(1) in the strong-coupling regime(= 8t), at half-filling and zero
magnetic field. The dotted line is the case 0—i.e., the ordinary

FIG. 3. The spin susceptibility of modél) with x=1 diverges
like T~ asT— 0. The quantityykgT is the integral of the spin-spin
correlation function, from fluctuation-dissipation theorem. A change

Hubbard model—obtained from Ref. 16, and the solid line the casén its low-temperature behavior is observed across the metal-
x=1, obtained from our exact calculations. Continuity argumentsinsulator transition value.
suggest that the specific heat for arbitrarg0<1 lies between

these two curves. The low-temperature peak originating from spin . ) )
excitations is depleted by the bond-charge interaction. are small compared with the bandwidth=4t; however, for

the ordinary Hubbard model, one céa posterior) extrapo-
Ref. 16 is due to spin degrees of freedom; the latter beindate the results concerning the formation of charge/spin gaps
not gapped, the low-temperature behavioiGaf is linear in  to the strong-coupling regime too.
spite of the fact that a charge gap is present atlam0 .’ In Applying the bosonization technique to modd)), one
contrast, in mode(1), for x=1 the spectrum does not carry can show(see also Refs. 1 and fhat (a) the charge sector
any spin quantum number, due to the rich symmetry of thehehaves like that of the Hubbard model, so tHat=0 atp
model® spins act therefore as a sort of dummy variables=1, and (b) the spin sector is gapless fou’=U/t
Although the valuex=1 is a particular one, it is reasonable +8x cosmp/2)>0, the spin excitations exhibiting a velocity
to expect that, for continuity argument, the plot @ for ~ ,_=y_\1—u'/7ve. In particular, a linear contribution to
intermediate values€x<1 lies between the two curves. As C,, from spin excitations is thus expected for angs long as
a consequence, we can infer that the effect of spin excitationg’ > Q.
is weakened by the presence of the bond-charge interaction, The exact results of the present wdfkgs. 2 and 3, and
at least in the strong-coupling regime. the discussion aboyéndicate that any attempt to mimic the

In order to have a qualitative idea Concerning the BeChordinary Hubbard model extrap0|ating the |0w-energy ap-

gaard salts,the temperature range of the figures compatibleproach tox— 1 would fail with respect to the spin channel,
with the 1D regime of, e.g. (TMTTEBr is kgT/t=0.3(in-  sjince the behavior is actually quite different>at1. This
deedt~0.1 eV andU~1 eV). also holds for the charge channel, according to the results in

The depletion of spin excitation is also confirmed by therefs. 7 and 8 which show that far=1 the latter is gapless
behavior of the magnetic susceptibility, defined &s at half-filling for |U|<4t.

=,u§<am/o7h>|hﬂo. The calculation shows that coincides
with ,uépA/kBT, wherep, (the density ofA species along
the chain is a regular function off, plotted at half-filling in
Fig. 3. One can observe that, differedfijrom the ordinary
Hubbard model X=0), the susceptibility is divergent fdr

In conclusion, in the present paper the finite-temperature
properties of the Hubbard model with bond-charge interac-
tion have been exactly derived for the val@ of the bond-
charge coupling. The results concerning the behavior of the
specific heat and the magnetic susceptibility indicate that the

—0 with a Curie-law behavior, reminiscent of a system ofbond-charge interaction tends to suppress the spin excitations
independent magnetic moments. This also holds for any fillof the system.
ing value, suggesting that, as- 1, the velocity of spin ex- Previous investigations about such model were concerned
citations vanishes, independently dfand of the filling; in  with either the ground state or the low-temperature limit. In
particular, no spin gap is present foe 1 either. contrast, our calculations are valid at any temperature. We
One can now compare such results with those obtainedmphasize that for correlated quantum systems exact results
through a low-energy approach. The latter is reliable onlyare very rare at finite temperature, even for those models that
when the interaction couplings and the thermal fluctuationdiave been proved to be integrable.
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