33 research outputs found

    Pattern formation resulting from faceted growth in zone-melted thin films

    Get PDF
    We develop a model for the recrystallization of Si films that are traversed by a molten zone. The model simulates the branching behavior of low-angle grain-boundary defects in these films to a remarkable degree. The simulated subboundary patterns scale approximately as the square root of the scan velocity, in excellent agreement with experiment.FWN – Publicaties zonder aanstelling Universiteit Leide

    Crossover effects in the Wolf-Villain model of epitaxial growth in 1+1 and 2+1 dimensions

    Full text link
    A simple model of epitaxial growth proposed by Wolf and Villain is investigated using extensive computer simulations. We find an unexpectedly complex crossover behavior of the original model in both 1+1 and 2+1 dimensions. A crossover from the effective growth exponent βeff ⁣ ⁣0.37\beta_{\rm eff}\!\approx\!0.37 to βeff ⁣ ⁣0.33\beta_{\rm eff}\!\approx\!0.33 is observed in 1+1 dimensions, whereas additional crossovers, which we believe are to the scaling behavior of an Edwards--Wilkinson type, are observed in both 1+1 and 2+1 dimensions. Anomalous scaling due to power--law growth of the average step height is found in 1+1 D, and also at short time and length scales in 2+1~D. The roughness exponents ζeffc\zeta_{\rm eff}^{\rm c} obtained from the height--height correlation functions in 1+1~D ( ⁣3/4\approx\!3/4) and 2+1~D ( ⁣2/3\approx\!2/3) cannot be simultaneously explained by any of the continuum equations proposed so far to describe epitaxial growth.Comment: 11 pages, REVTeX 3.0, IC-DDV-93-00

    Unconventional MBE Strategies from Computer Simulations for Optimized Growth Conditions

    Full text link
    We investigate the influence of step edge diffusion (SED) and desorption on Molecular Beam Epitaxy (MBE) using kinetic Monte-Carlo simulations of the solid-on-solid (SOS) model. Based on these investigations we propose two strategies to optimize MBE growth. The strategies are applicable in different growth regimes: During layer-by-layer growth one can exploit the presence of desorption in order to achieve smooth surfaces. By additional short high flux pulses of particles one can increase the growth rate and assist layer-by-layer growth. If, however, mounds are formed (non-layer-by-layer growth) the SED can be used to control size and shape of the three-dimensional structures. By controlled reduction of the flux with time we achieve a fast coarsening together with smooth step edges.Comment: 19 pages, 7 figures, submitted to Phys. Rev.

    Dynamical properties of long-wavelength interface fluctuations during nucleation-dominated crystal growth

    No full text

    Pattern Formation Resulting from Faceted Growth in Zone Melted Thin Films

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Pattern Formation Resulting from Faceted Growth in Zone Melted Thin Films

    No full text
    corecore