92 research outputs found

    Stars in five dimensional Kaluza Klein gravity

    Full text link
    In the five dimensional Kaluza Klein (KK) theory there is a well known class of static and electromagnetic--free KK--equations characterized by a naked singularity behavior, namely the Generalized Schwarzschild solution (GSS). We present here a set of interior solutions of five dimensional KK--equations. These equations have been numerically integrated to match the GSS in the vacuum. The solutions are candidates to describe the possible interior perfect fluid source of the exterior GSS metric and thus they can be models for stars for static, neutral astrophysical objects in the ordinary (four dimensional) spacetime.Comment: 15 pages, 8 figures. To be published in EPJ

    Saturation physics and angular correlations at RHIC and LHC

    Full text link
    We investigate the angular correlation between pions and photons produced in deuteron-gold collisions at RHIC and proton-lead collisions at LHC using the Color Glass Condensate formalism and make predictions for the dependence of the production cross section on the angle between the pion and photon at different rapidities and transverse momenta. Measuring this dependence would shed further light on the role of high gluon density and saturation dynamics at RHIC and LHC.Comment: 2-column EPJ C format, requires svjour.cls and svepj.clo; 4 pages, 4 figure

    Small x Phenomenology: summary of the 3rd Lund Small x Workshop in 2004

    Get PDF
    A third workshop on small-x physics, within the Small-x Collaboration, was held in Hamburg in May 2004 with the aim of overviewing recent theoretical progress in this area and summarizing the experimental status.A third workshop on small-x physics, within the Small-x Collaboration, was held in Hamburg in May 2004 with the aim of overviewing recent theoretical progress in this area and summarizing the experimental status

    Production of secondaries in soft p+pb collisions at LHC

    Full text link
    We calculate the inclusive spectra of secondaries produced in soft (minimum bias) p+Pb collisions in the framework of Quark-Gluon String Model at LHC energy, and by taking into account the inelastic screening corrections (percolation effects). The role of these effects is expected to be very large at very high energies, and they should decrease the spectra about 3 times in the midrapidity region and increase them about 2 times in the fragmentation region at the energy of LHC.Comment: 18 pages and 10 figures. arXiv admin note: text overlap with arXiv:0802.219

    Centrality Dependence Of The Pseudorapidity Density Distribution For Charged Particles In Pb-pb Collisions At √snn=2.76tev

    Get PDF
    7264/Mai61062

    Long-range Angular Correlations On The Near And Away Side In P-pb Collisions At √snn=5.02 Tev

    Get PDF
    7191/Mar294

    (Anti-)deuteron production in pp collisions at 1as=13TeV

    Get PDF
    The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)

    The VHMPID RICH upgrade project for ALICE at LHC

    No full text
    RHIC results have shown the importance of high momentum particles as hard probes and the need for particle identification (PID) in a very large momentum range. A Very High Momentum PID (VHMPID) detector has been proposed as upgrade of ALICE to extend the track-by-track identification capabilities for charged hadrons from the presents GeV/c limit to the momentum range 10-30 GeV/c. The VHMPID detector is a focusing RICH using C(4)F(10) gaseous radiator coupled to a CsI-based photon detector. Detector design studies, achievable Cherenkov angle resolution, expected performance and high momentum triggering will be discussed. (C) 2010 Elsevier B.V. All rights reserved

    A Very High Momentum Particle Identification Detector

    No full text
    A new detector concept has been investigated to extend the capabilities of heavy-ion collider experiments, represented here through the ALICE detector, in the high transverse momentum (pT region. The resulting Very High Momentum Particle Identification Detector (VHMPID) performs charged hadron identification on a track-by-track basis in the 5 GeV/c < p < 25 GeV/c momentum range and provides heavy-ion experiments with new opportunities to study parton-medium interactions at RHIC and LHC energies, where the creation of deconfined quark-gluon matter has been established. The detector is based on novel advances to the pressurized gaseous ring imaging Cherenkov (RICH) concept, which yield a very compact, high resolution addition to existing heavy-ion experiments. We conclude that in order for the device to yield statistically significant results not only for single particle measurements, but also for di-hadron and jet-tagged correlation studies, it has to cover contiguously up to 30% of a central barrel detector in radial direction. This will allow, for the first time, identified charged hadron measurements in jets. In this paper we summarize the physics motivations for such a device, as well as its conceptual design, layout, and integration into ALICE.1295DE-FG02-07ER41521; DOE; National Research Foundation of Korea; NRF; National Research Foundation of Korea; NSF-PHY-0968903; NSF; National Research Foundation of Korea; NSF-PHY-1305280; NSF; National Research Foundation of Korea(2006) J. Phys. G, 32, p. 1295Sapeta, S., Wiedemann, U.A., (2008) Eur. Phys. J. C, 55, p. 293Liu, W., Fries, R., (2008) Phys. Rev. C, 77, p. 054902Hwa, R.C., Yang, C.B., (2006) Phys. Rev. Lett., 97, p. 042301Lévai, P., Berényi, D., Pásztor, A., Skokov, V.V., (2011) J. Phys. G, 38, p. 124155Aurenche, P., Zakharov, B.G., (2011) Eur. Phys. J. C, 71, p. 1829Bellwied, R., Markert, C., (2010) Phys. Lett. B, 691, p. 208Xu, Y., (2010) J. Phys. G, 37, p. 094059for the STAR Collaboration (L. Ruan), (2010) J. Phys. G, 37, p. 094013(2011) Phys. Rev. C, 83, p. 024909(2013) Phys. Lett. B, 719, p. 18Barile, F., (2011) AIP Conf. Proc., 1317, p. 71HMPID Technical Design Report CERN/LHCC 98-19 ALICE TDR 1DiMauro, A., (2010) Nucl. Instrum Methods A, 617, p. 424Albrecht, E., (2003) Nucl. Instrum Methods A, 510, p. 262Ando, S., (2006) J. Photopolym. Sci. Technol., 19, p. 351Artuso, M., (2006) Nucl. Instrum Methods A, 558, p. 373Barber, G.J., (2008) Nucl. Instrum Methods A, 593, p. 624Baillon, P., (1989) Nucl. Instrum Methods A, 277, p. 338G. Volpe, Proceedings of the RICH2010 Conference, to be published in Nucl. Instrum Methods ACozza, D., (2003) Nucl. Instrum Methods A, 502, p. 101Santiard, J.-C., (2004) Nucl. Instrum Methods A, 518, p. 498Abbon, P., (2007) Nucl. Instrum Methods A, 577, p. 455Abbon, P., (2008) Nucl. Instrum Methods A, 589, p. 362Hamar, G., Kiss, G., Varga, D., (2011) Nucl. Instrum Methods A, 648, p. 163Varga, D., Kiss, G., Hamar, G., Bencédi, G., (2013) Nucl. Instrum Methods A, 698, p. 11G. Volpe, PhD thesis, Study of Cherenkov detectors for high momentum charged particles identification in the ALICE experiment at LHC, Università degli Studi di Bari, Facolta di Scienze Matematiche, Fisiche e Naturali, Dottorato di ricerca in Fisica XIX ciclo, Anno accademico 2005-2006G. Volpe, PoS HIGH-pTLHC, 022 (2008) The VHMPID detector in the ALICE experiment at LHCD. Cozza, Internal Note RICH-ALICE/98-39(2003) Nucl. Instrum Methods A, 502, p. 300Di Mauro, A., (1999) Nucl. Instrum Methods A, 433, p. 190Hirai, M., Kumano, S., (2010) Prog. Theor. Phys. Suppl., 186, p. 252Albino, S., (2010) Rev. Mod. Phys., 82, p. 2489(2009) Phys. Rev. D, 79, p. 112005Albino B.A. Kniehl, S., Kramer, G., (2010) Phys. Rev. Lett., 104, p. 242001Albino, S., Kniehl, B.A., Kramer, G., (2008) Nucl. Phys. B, 803, p. 42De Florian, D., Sassot, R., Stratman, M., (2007) Phys. Rev. D, 76, p. 074033Albino, S., Kniehl, B.A., Kramer, G., (2008) Nucl. Phys. B, 803, p. 42Hirai, M., Kumano, S., Nagai, T.H., Sudoh, K., (2007) Phys. Rev. D, 75, p. 094009(2009) Eur. Phys. J. C, 62, p. 187Grigoryan, L., (2011) Phys. Rev. C, 83, p. 014904Nagy, Z., Soper, D.E., (2012) JHEP, 6, p. 044Gang, C., Hui-Ling, W., (2011) Int. J. Mod. Phys. E, 20, p. 667Pronko, A., (2005) Int. J. Mod. Phys. A, 20, p. 3723Kaidalov, A.B., (1987) Sov. J. Nucl. Phys., 45, p. 902Kraan, A.C., (2008) AIP Conf. Proc., 1038, p. 45(2007) PoS C, POD07, p. 027(2008) J. Phys. G, 35, p. 104096M. Purschke (for the PHENIX Collaboration), QM 2011 proceedingsH. Appelshaeuser (for the ALICE Collaboration), QM 2011 proceedingsY.J. Lie (for the CMS Collaboration), QM 2011 proceedings(2008) J. Phys. G, 35, p. 044027Wang, X.N., Gyulassy, M., (1991) Phys. Rev. D, 44, p. 3501Gyulassy, M., Lévai, P., Vitev, I., (2000) Phys. Rev. Lett., 85, p. 5535Gyulassy, M., Lévai, P., Vitev, I., (2000) Nucl. Phys. B, 571, p. 197Gyulassy, M., Lévai, P., Vitev, I., (2001) Nucl. Phys. B, 594, p. 371Barnafoldi, G., (2004) Prog. Part. Nucl. Phys., 53, p. 257Jia, J., Lacey, R., (2009) Phys. Rev. C, 79, p. 011901Markert, C., Bellwied, R., Vitev, I., (2008) Phys. Lett. B, 669, p. 92Alver, B., Roland, G., (2010) Phys. Rev. C, 81, p. 054905Gavin, S., McLerran, L., Moschelli, G., (2009) Phys. Rev. C, 79, p. 051902Nagle, J., McCumber, M., (2011) Phys. Rev. C, 83, p. 044908(2004) Eur. Phys. J. C, 33, p. S425G. Paić, A. Ortiz (for the ALICE Collaboration), ALICE-INT-2009-015, PoS(High-pT physics09)007(2011) EPJ Web of Conferences, 13, p. 03004for the ALICE Collaboration (S. Pochybova), (2009) PoS High-pT, physics09, p. 045Ellis, J.R., Geiger, K., Kowalski, H., (1996) Phys. Rev. D, 54, p. 5443(2007) J. Phys. G, 34, p. S685(2000) Eur. Phys. J. C, 17, p. 207(2009) Molnár (for the ALICE Collaboration), Proceedings of the High-pTp_T Physics for the LHC Workshop, 4-7. , February, PraguearXiv:1008.0413, ALICE-EMCal Physics Performance Report, R. Bellwied(2013) Phys. Lett. B, 718, p. 795(2013) Phys. Lett. B, 719, p. 29for the ALICE Collaboration (Y. Belikov), (2011) J. Phys. G, 38, p. 124078Lin, Z.-W., Ko, C.M., Li, B.-A., Zhang, B., Pal, S., (2005) Phys. Rev. C, 72, p. 064901Pierog, T., Werner, K., (2009) Nucl. Phys. Proc. Suppl., 196, p. 102Mikhailov, K., Werner, K., Karpenko, I., Pierog, T., (2011) Phys. Part. Nucl. Lett., 8, p. 989Appelshauser, H., (2011) J. Phys. G, 38, p. 124014Kraan, A.C., (2008) AIP Conf. Proc., 1038, p. 45Grigoryan, L., (2011) Phys. Rev. C, 83, p. 014904Aurenche, P., Zhakarov, B., (2011) Eur. Phys. J. C, 71, p. 1829arXiv:1208.0448, D. BerenyiKaidalov, A.B., (1987) Yad. Fiz., 45, p. 1452Kaidalov, A.B., (1987) Sov. J. Nucl. Phys., 45, p. 1452Tsallis, C., (2009) Eur. Phys. J. A, 40, p. 257Biro, T.S., (2008) EPL, 84, p. 56003Biro, T.S., Urmossy, K., Schram, Z., (2010) J. Phys. G, 37, p. 094027Biro, T.S., (2013) Physica A, 392, p. 3132Biro, T.S., Barnafoldi, G.G., Van, P., (2013) Eur. Phys. J. A, 49, p. 110(2012) Eur. Phys. J. C, 72, p. 2164(2010) Eur. Phys. J. C, 68, p. 345(2010) Eur. Phys. J. C, 68, p. 89Cleymans, J., Worku, D., (2012) J. Phys. G, 39, p. 025006Cleymans, J., Worku, D., (2012) Eur. Phys. J. A, 48, p. 160Becattini, F., Ferroni, L., (2004) Eur. Phys. J. C, 35, p. 243Becattini, F., Ferroni, L., (2004) Eur. Phys. J. C, 38, p. 225Wilk, G., Wlodarczyk, Z., (2009) Eur. Phys. J. A, 40, p. 299Begun, V.V., Gazdzicki, M., Gorenstein, M.I., (2008) Phys. Rev. C, 78, p. 024904Urmossy, K., Barnaföldi, G.G., Biró, T.S., (2012) Phys. Lett. B, 718, p. 12
    corecore