12 research outputs found
Tactile Discrimination Using Template Classifiers: Towards a Model of Feature Extraction in Mammalian Vibrissal Systems
Rats and other whiskered mammals are capable of making sophisticated sensory discriminations using tactile signals from their facial whiskers (vibrissae). As part of a programme of work to develop biomimetic technologies for vibrissal sensing, including whiskered robots, we are devising algorithms for the fast extraction of object parameters from whisker deflection data. Previous work has demonstrated that radial distance to contact can be estimated from forces measured at the base of the whisker shaft. We show that in the case of a moving object contacting a whisker, the measured force can be ambiguous in distinguishing a nearby object moving slowly from a more distant object moving rapidly. This ambiguity can be resolved by simultaneously extracting object position and speed from the whisker deflection time series – that is by attending to the dynamics of the whisker’s interaction with the object. We compare a simple classifier with an adaptive EM (Expectation Maximisation) classifier. Both systems are effective at simultaneously extracting the two parameters, the EM-classifier showing similar performance to a handpicked template classifier. We propose that adaptive classification algorithms can provide insights into the types of computations performed in the rat vibrissal system when the animal is faced with a discrimination task
Optimal Morphology of a Biologically-Inspired Whisker Array on an Obstacle-Avoiding Robot
Whiskers are versatile sensors for short-range navigation and exploration that are widespread in many animal species, especially in rodents. Their arrangement is in very precise rows and arcs on both sides of the animal's head
Threats to an ecosystem service: pressures on pollinators
Insect pollinators of crops and wild plants are under threat globally and their decline or loss could have profound economic and environmental consequences. Here, we argue that multiple anthropogenic pressures – including land-use intensification, climate change, and the spread of alien species and diseases – are primarily responsible for insect-pollinator declines. We show that a complex interplay between pressures (eg lack of food sources, diseases, and pesticides) and biological processes (eg species dispersal and interactions) at a range of scales (from genes to ecosystems) underpins the general decline in insect-pollinator populations. Interdisciplinary research on the nature and impacts of these interactions will be needed if human food security and ecosystem function are to be preserved. We highlight key areas that require research focus and outline some practical steps to alleviate the pressures on pollinators and the pollination services they deliver to wild and crop plants