1,998 research outputs found

    Vector Manifestation and Fate of Vector Mesons in Dense Matter

    Full text link
    We describe in-medium properties of hadrons in dense matter near chiral restoration using a Wilsonian matching to QCD of an effective field theory with hidden local symmetry at the chiral cutoff Λ\Lambda. We find that chiral symmetry is restored in vector manifestation \`a la Harada and Yamawaki at a critical matter density ncn_c. We express the critical density in terms of QCD correlators in dense matter at the matching scale. In a manner completely analogous to what happens at the critical NfcN_f^c and at the critical temperature TcT^c, the vector meson mass is found to vanish (in the chiral limit) at chiral restoration. This result provides a support for Brown-Rho scaling predicted a decade ago.Comment: 14 pages, 2 figure

    Renormalization Group Analysis of \rho-Meson Properties at Finite Density

    Get PDF
    We calculate the density dependence of the ρ\rho-meson mass and coupling constant(gρNNg_{\rho NN}) for ρ\rho-nucleon-nucleon vertex at one loop using the lagrangian where the ρ\rho-meson is included as a dynamical gauge boson of a hidden local symmetry. From the condition that thermodynamic potential should not depend on the arbitrary energy scale, renormalization scale, one can construct a renormalization group equation for the thermodynamic potential and argue that the various renormalization group coefficients are functions of the density or temperature. We calculate the β\beta-function for ρ\rho-nucleon-nucleon coupling constant (gρNNg_{\rho NN}) and γ\gamma-function for ρ\rho-meson mass (γmρ\gamma_{m_\rho}). We found that the ρ\rho-meson mass and the coupling constant for gρNNg_{\rho NN} drop as density increases in the low energy limit.Comment: 24 pages, 10 figures, revised versio

    What does the rho-meson do? In-medium mass shift scenarios versus hadronic model calculations

    Full text link
    The NA60 experiment has studied low-mass muon pair production in In-In collisions at 158AGeV158 {\rm AGeV} with unprecedented precision. With these results there is hope that the in-medium modifications of the vector meson spectral function can be constrained more thoroughly than before. We investigate in particular what can be learned about collisional broadening by a hot and dense medium and what constrains the experimental results put on in-medium mass shift scenarios. The data show a clear indication of considerable in-medium broadening effects but disfavor mass shift scenarios where the ρ\rho-meson mass scales with the square root of the chiral condensate. Scaling scenarios which predict at finite density a dropping of the ρ\rho-meson mass that is stronger than that of the quark condensate are clearly ruled out since they are also accompanied by a sharpening of the spectral function.Comment: Proceeding contribution, Talk given by J. Ruppert at Workshop for Young Scientists on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks 2006), Villasimius, Sardinia, Italy, 15-20 May 2006. To appear in EPJ

    Antiflow of kaons in relativistic heavy ion collisions

    Get PDF
    We compare relativistic transport model calculations to recent data on the sideward flow of neutral strange K^0_s mesons for Au+Au collisions at 6 AGeV. A soft nuclear equation of state is found to describe very well the positive proton flow data measured in the same experiment. In the absence of kaon potential, the K^0 flow pattern is similar to that of protons. The kaon flow becomes negative if a repulsive kaon potential determined from the impulse approximation is introduced. However, this potential underestimates the data which exhibits larger antiflow. An excellent agreement with the data is obtained when a relativistic scalar-vector kaon potential, that has stronger density dependence, is used. We further find that the transverse momentum dependence of directed and elliptic flow is quite sensitive to the kaon potential in dense matter.Comment: 5 pages, Revtex, 4 figure

    Kaon Condensation in ``Nuclear Star" Matter

    Full text link
    The critical density for kaon condensation in ``nuclear star" matter is computed up to two-loop order {\it in medium} (corresponding to next-to-next-to-leading order in chiral perturbation theory in free space) with a heavy-baryon effective chiral Lagrangian whose parameters are determined from KNKN scattering and kaonic atom data. To the order considered, the kaon self-energy has highly non-linear density dependence in dense matter. We find that the four-Fermi interaction terms in the chiral Lagrangian play an important role in triggering condensation, predicting for ``natural" values of the four-Fermi interactions a rather low critical density, ρc<4ρ0\rho_c < 4 \rho_0.Comment: 12 pages and 2 figures(LaTeX), SNUTP-94-28. The fig. 3 is replaced, with some changes in the text but the conclusion is not affected by these change

    Spectroscopy of resonance decays in high-energy heavy-ion collisions

    Full text link
    Invariant mass distributions of the hadronic decay products from resonances formed in relativistic heavy ion collision (RHIC) experiments are investigated with a view to disentangle the effects of thermal motion and the phase space of decay products from those of intrinsic changes in the structure of resonances at the freeze-out conditions. Analytic results of peak mass shifts for the cases of both equal and unequal mass decay products are derived. The shift is expressed in terms of the peak mass and width of the vacuum or medium-modified spectral functions and temperature. Examples of expected shifts in meson (e.g., rho, omega, and sigma) and baryon (e.g., Delta) resonances that are helpful to interpret recent RHIC measurements at BNL are provided. Although significant downward mass shifts are caused by widened widths of the ρ\rho-meson in medium, a downward shift of at least 50 MeV in its intrinsic mass is required to account for the reported downward shift of 60-70 MeV in the peak of the rho-invariant mass distribution. An observed downward shift from the vacuum peak value of the Delta distinctively signals a significant downward shift in its intrinsic peak mass, since unlike for the rho-meson, phase space functions produce an upward shift for the Delta isobar.Comment: published version with slight change of title and some typos corrected, 12 pages, 5 figure

    Adapting Real Quantifier Elimination Methods for Conflict Set Computation

    Get PDF
    The satisfiability problem in real closed fields is decidable. In the context of satisfiability modulo theories, the problem restricted to conjunctive sets of literals, that is, sets of polynomial constraints, is of particular importance. One of the central problems is the computation of good explanations of the unsatisfiability of such sets, i.e.\ obtaining a small subset of the input constraints whose conjunction is already unsatisfiable. We adapt two commonly used real quantifier elimination methods, cylindrical algebraic decomposition and virtual substitution, to provide such conflict sets and demonstrate the performance of our method in practice

    Model for the Quasifree Polarization-Transfer Measurements in the (p,n) reaction at 495 MeV

    Get PDF
    The recent (p,n) polarization transfer experiments at LAMPF are explained in terms of a dropping rho-meson mass in the medium.Comment: 12 pages of text (LATEX), 4 figures (not included, available from the authors). February 199

    Fusion Welding of ZrB2-Based Ceramics

    Get PDF

    Evolution of Fluctuation in relativistic heavy-ion collisions

    Get PDF
    We have studied the time evolution of the fluctuations in the net baryon number for different initial conditions and space time evolution scenarios. We observe that the fluctuations at the freeze-out depend crucially on the equation of state (EOS) of the system and for realistic EOS the initial fluctuation is substantially dissipated at the freeze-out stage. At SPS energies the fluctuations in net baryon number at the freeze-out stage for quark gluon plasma and hadronic initial state is close to the Poissonian noise for ideal as well as for EOS obtained by including heavier hadronic degrees of freedom. For EOS obtained from the parametrization of lattice QCD results the fluctuation is larger than Poissonian noise. It is also observed that at RHIC energies the fluctuations at the freeze-out point deviates from the Poissonian noise for ideal as well as realistic equation of state, indicating presence of dynamical fluctuations.Comment: 9 pages and 6 figures (Major modifications done
    corecore