625 research outputs found

    Chern-Simons Number Diffusion and Hard Thermal Loops on the Lattice

    Get PDF
    We develop a discrete lattice implementation of the hard thermal loop effective action by the method of added auxiliary fields. We use the resulting model to measure the sphaleron rate (topological susceptibility) of Yang-Mills theory at weak coupling. Our results give parametric behavior in accord with the arguments of Arnold, Son, and Yaffe, and are in quantitative agreement with the results of Moore, Hu, and Muller.Comment: 43 pages, 6 figure

    Classical Open String Models in 4-Dim Minkowski Spacetime

    Full text link
    Classical bosonic open string models in fourdimensional Minkowski spacetime are discussed. A special attention is paid to the choice of edge conditions, which can follow consistently from the action principle. We consider lagrangians that can depend on second order derivatives of worldsheet coordinates. A revised interpretation of the variational problem for such theories is given. We derive a general form of a boundary term that can be added to the open string action to control edge conditions and modify conservation laws. An extended boundary problem for minimal surfaces is examined. Following the treatment of this model in the geometric approach, we obtain that classical open string states correspond to solutions of a complex Liouville equation. In contrast to the Nambu-Goto case, the Liouville potential is finite and constant at worldsheet boundaries. The phase part of the potential defines topological sectors of solutions.Comment: 25 pages, LaTeX, preprint TPJU-28-93 (the previous version was truncated by ftp...

    Multidimensional Data Visual Exploration by Interactive Information Segments

    Get PDF
    Visualization techniques provide an outstanding role in KDD process for data analysis and mining. However, one image does not always convey successfully the inherent information from high dimensionality, very large databases. In this paper we introduce VSIS (Visual Set of Information Segments), an interactive tool to visually explore multidimensional, very large, numerical data. Within the supervised learning, our proposal approaches the problem of classification by searching of meaningful intervals belonging to the most relevant attributes. These intervals are displayed as multi–colored bars in which the degree of impurity with respect to the class membership can be easily perceived. Such bars can be re–explored interactively with new values of user–defined parameters. A case study of applying VSIS to some UCI repository data sets shows the usefulness of our tool in supporting the exploration of multidimensional and very large data

    Optimal low-thrust trajectories to asteroids through an algorithm based on differential dynamic programming

    Get PDF
    In this paper an optimisation algorithm based on Differential Dynamic Programming is applied to the design of rendezvous and fly-by trajectories to near Earth objects. Differential dynamic programming is a successive approximation technique that computes a feedback control law in correspondence of a fixed number of decision times. In this way the high dimensional problem characteristic of low-thrust optimisation is reduced into a series of small dimensional problems. The proposed method exploits the stage-wise approach to incorporate an adaptive refinement of the discretisation mesh within the optimisation process. A particular interpolation technique was used to preserve the feedback nature of the control law, thus improving robustness against some approximation errors introduced during the adaptation process. The algorithm implements global variations of the control law, which ensure a further increase in robustness. The results presented show how the proposed approach is capable of fully exploiting the multi-body dynamics of the problem; in fact, in one of the study cases, a fly-by of the Earth is scheduled, which was not included in the first guess solution

    Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

    Full text link
    Low dimensional structures have demonstrated improved thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, {\kappa}l. This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other than the reduction in {\kappa}l, further improvements in the TE figure of merit ZT could potentially originate from the thermoelectric power factor. In this work, we couple the ballistic (Landauer) and diffusive linearized Boltzmann electron transport theory to the atomistic sp3d5s*-spin-orbit-coupled tight-binding (TB) electronic structure model. We calculate the room temperature electrical conductivity, Seebeck coefficient, and power factor of narrow 1D Si nanowires (NWs). We describe the numerical formulation of coupling TB to those transport formalisms, the approximations involved, and explain the differences in the conclusions obtained from each model. We investigate the effects of cross section size, transport orientation and confinement orientation, and the influence of the different scattering mechanisms. We show that such methodology can provide robust results for structures including thousands of atoms in the simulation domain and extending to length scales beyond 10nm, and point towards insightful design directions using the length scale and geometry as a design degree of freedom. We find that the effect of low dimensionality on the thermoelectric power factor of Si NWs can be observed at diameters below ~7nm, and that quantum confinement and different transport orientations offer the possibility for power factor optimization.Comment: 42 pages, 14 figures; Journal of Computational Electronics, 201

    Efficacy of a Commercial Weight Management Program Compared with a Do-It-Yourself Approach: A Randomized Clinical Trial

    Get PDF
    Importance: Given the prevalence of obesity, accessible and effective treatment options are needed to manage obesity and its comorbid conditions. Commercial weight management programs are a potential solution to the lack of available treatment, providing greater access at lower cost than clinic-based approaches, but few commercial programs have been rigorously evaluated. Objective: To compare the differences in weight change between individuals randomly assigned to a commercial weight management program and those randomly assigned to a do-it-yourself (DIY) approach. Design, Setting, and Participants: This 1-year, randomized clinical trial conducted in the United States, Canada, and United Kingdom between June 19, 2018, and November 30, 2019, enrolled 373 adults aged 18 to 75 years with a body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) of 25 to 45. Assessors were blinded to treatment conditions. Interventions: A widely available commercial weight management program that included reduced requirements for dietary self-monitoring and recommendations for a variety of DIY approaches to weight loss. Main Outcomes and Measures: The primary outcomes were the difference in weight change between the 2 groups at 3 and 12 months. The a priori hypothesis was that the commercial program would result in greater weight loss than the DIY approach at 3 and 12 months. Analyses were performed on an intention-To-Treat basis. Results: The study include 373 participants (272 women [72.9%]; mean [SD] BMI, 33.8 [5.2]; 77 [20.6%] aged 18-34 years, 74 [19.8%] aged 35-43 years, 82 [22.0%] aged 44-52 years, and 140 [37.5%] aged 53-75 years). At 12 months, retention rates were 88.8% (166 of 187) for the commercial weight management program group and 95.7% (178 of 186) for the DIY group. At 3 months, participants in the commercial program had a mean (SD) weight loss of-3.8 (4.1) kg vs-1.8 (3.7) kg among those in the DIY group. At 12 months, participants in the commercial program had a mean (SD) weight loss of-4.4 (7.3) kg vs-1.7 (7.3) kg among those in the DIY group. The mean difference between groups was-2.0 kg (97.5% CI,-2.9 to-1.1 kg) at 3 months (P <.001) and-2.6 kg (97.5% CI,-4.3 to-0.8 kg) at 12 months (P <.001). A greater percentage of participants in the commercial program group than participants in the DIY group achieved loss of 5% of body weight at both 3 months (40.7% [72 of 177] vs 18.6% [34 of 183]) and 12 months (42.8% [71 of 166] vs 24.7% [44 of 178]). Conclusions and Relevance: Adults randomly assigned to a commercial weight management program with reduced requirements for dietary self-monitoring lost more weight and were more likely to achieve weight loss of 5% at 3 and 12 months than adults following a DIY approach. This study contributes data on the efficacy of commercial weight management programs and DIY weight management approaches. Trial Registration: ClinicalTrials.gov Identifier: NCT03571893

    Tensor Correlations Measured in 3He(e,e'pp)n

    Full text link
    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum, ptotp_{tot}. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptotp_{tot} and rises to approximately 0.5 at large ptotp_{tot}. This shows the dominance of tensor over central correlations at this relative momentum.Comment: 4 pages, 4 figures, submitted to PR

    Measurement of the nuclear multiplicity ratio for Ks0K^0_s hadronization at CLAS

    Full text link
    The influence of cold nuclear matter on lepto-production of hadrons in semi-inclusive deep inelastic scattering is measured using the CLAS detector in Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the Ks0K_s^0 multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a function of the fractional virtual photon energy zz transferred to the Ks0K_s^0 and the transverse momentum squared pT2p_{T}^2 of the Ks0K_s^0. We find that the multiplicity ratios for Ks0K^0_s are reduced in the nuclear medium at high zz and low pT2p_{T}^2, with a trend for the Ks0K^0_s transverse momentum to be broadened in the nucleus for large pT2p_{T}^2.Comment: Submitted to Phys. Lett.

    Coherent Photoproduction of pi^+ from 3^He

    Full text link
    We have measured the differential cross section for the γ\gamma3^3Heπ+t\rightarrow \pi^+ t reaction. This reaction was studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid 3^3He target. The differential cross sections for the γ\gamma3^3Heπ+t\rightarrow \pi^+ t reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model.Comment: 11 pages, 16 figure

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830ϵ0.9430.830\leq \epsilon\leq 0.943
    corecore