242 research outputs found

    Reconstructing Seesaws

    Full text link
    We explore some aspects of "reconstructing" the heavy singlet sector of supersymmetric type I seesaw models, for two, three or four singlets. We work in the limit where one light neutrino is massless. In an ideal world, where selected coefficients of the TeV-scale effective Lagrangian could be measured with arbitrary accuracy, the two-singlet case can be reconstructed, two three or more singlets can be differentiated, and an inverse seesaw with four singlets can be reconstructed. In a more realistic world, we estimate \ell_\a \to \ell_\b \gamma expectations with a "Minimal-Flavour-Violation-like" ansatz, which gives a relation between ratios of the three branching ratios. The two singlet model predicts a discrete set of ratios.Comment: 14 page

    Complex CKM from Spontaneous CP Violation Without Flavor Changing Neutral Current

    Get PDF
    We analyse the general constraints on unified gauge models with spontaneous CP breaking that satisfy the conditions that (i) CP violation in the quark sector is described by a realistic complex CKM matrix, and (ii) there is no significant flavor changing neutral current effects in the quark sector. We show that the crucial requirement in order to conform to the above conditions is that spontaneous CP breaking occurs at a very high scale by complex vevs of standard model singlet Higgs fields. Two classes of models are found, one consisting of pure Higgs extensions and the other one involving fermionic extensions of the standard model. We give examples of each class and discuss their possible embeddings into higher unified theories. One of the models has the interesting property that spontaneous CP violation is triggered by spontaneous P violation, thereby linking the scale of CP violation to the seesaw scale for neutrino masses.Comment: Latex file ; 18 pages; No figures; some typos correcte

    Quantum measurement in a family of hidden-variable theories

    Get PDF
    The measurement process for hidden-configuration formulations of quantum mechanics is analysed. It is shown how a satisfactory description of quantum measurement can be given in this framework. The unified treatment of hidden-configuration theories, including Bohmian mechanics and Nelson's stochastic mechanics, helps in understanding the true reasons why the problem of quantum measurement can succesfully be solved within such theories.Comment: 16 pages, LaTeX; all special macros are included in the file; a figure is there, but it is processed by LaTe

    Constraints on the rare tau decays from mu --> e gamma in the supersymmetric see-saw model

    Full text link
    It is now a firmly established fact that all family lepton numbers are violated in Nature. In this paper we discuss the implications of this observation for future searches for rare tau decays in the supersymmetric see-saw model. Using the two loop renormalization group evolution of the soft terms and the Yukawa couplings we show that there exists a lower bound on the rate of the rare process mu --> e gamma of the form BR(mu --> e gamma) > C BR(tau --> mu gamma) BR(tau --> e gamma), where C is a constant that depends on supersymmetric parameters. Our only assumption is the absence of cancellations among the high-energy see-saw parameters. We also discuss the implications of this bound for future searches for rare tau decays. In particular, for large regions of the mSUGRA parameter space, we show that present B-factories could discover either tau --> mu gamma or tau --> e gamma, but not both.Comment: 39 pages, 7 figures. Typos corrected, references adde

    An inverse approach to Einstein's equations for non-conducting fluids

    Full text link
    We show that a flow (timelike congruence) in any type B1B_{1} warped product spacetime is uniquely and algorithmically determined by the condition of zero flux. (Though restricted, these spaces include many cases of interest.) The flow is written out explicitly for canonical representations of the spacetimes. With the flow determined, we explore an inverse approach to Einstein's equations where a phenomenological fluid interpretation of a spacetime follows directly from the metric irrespective of the choice of coordinates. This approach is pursued for fluids with anisotropic pressure and shear viscosity. In certain degenerate cases this interpretation is shown to be generically not unique. The framework developed allows the study of exact solutions in any frame without transformations. We provide a number of examples, in various coordinates, including spacetimes with and without unique interpretations. The results and algorithmic procedure developed are implemented as a computer algebra program called GRSource.Comment: 9 pages revtex4. Final form to appear in Phys Rev

    The Interplay Between the "Low" and "High" Energy CP-Violation in Leptogenesis

    Full text link
    We analyse within the "flavoured" leptogenesis scenario of baryon asymmetry generation, the interplay of the "low energy" CP-violation, originating from the PMNS neutrino mixing matrix UU, and the "high energy" CP-violation which can be present in the matrix of neutrino Yukawa couplings, λ\lambda, and can manifest itself only in "high" energy scale processes. The type I see-saw model with three heavy right-handed Majorana neutrinos having hierarchical spectrum is considered. The "orthogonal" parametrisation of the matrix of neutrino Yukawa couplings, which involves a complex orthogonal matrix RR, is employed. In this approach the matrix RR is the source of "high energy" CP-violation. Results for normal hierarchical (NH) and inverted hierarchical (IH) light neutrino mass spectrum are derived in the case of decoupling of the heaviest RH Majorana neutrino. It is shown that taking into account the contribution to YBY_B due to the CP-violating phases in the neutrino mixing matrix UU can change drastically the predictions for YBY_B, obtained assuming only "high energy" CP-violation from the RR-matrix is operative in leptogenesis. In the case of IH spectrum, in particular, there exist significant regions in the corresponding parameter space where the purely "high energy" contribution in YBY_B plays a subdominant role in the production of baryon asymmetry compatible with the observations.Comment: Results unchanged; comments and references added; version to be puplished in Eur.Phys.J.

    On the mechanisms of heavy-quarkonium hadroproduction

    Get PDF
    We discuss the various mechanisms potentially at work in hadroproduction of heavy quarkonia in the light of computations of higher-order QCD corrections both in the Colour-Singlet (CS) and Colour-Octet (CO) channels and the inclusion of the contribution arising from the s-channel cut in the CS channel. We also discuss new observables meant to better discriminate between these different mechanisms.Comment: Invited review talk at 3rd International Conference On Hard And Electromagnetic Probes Of High-Energy Nuclear Collisions (HP2008), 8-14 June 2008, Illa da Toxa, Galicia, Spain. 11 pages, 21 figures, LaTeX, uses svjour.cls and svepj.clo (included

    Minimal Scenarios for Leptogenesis and CP Violation

    Full text link
    The relation between leptogenesis and CP violation at low energies is analyzed in detail in the framework of the minimal seesaw mechanism. Working, without loss of generality, in a weak basis where both the charged lepton and the right-handed Majorana mass matrices are diagonal and real, we consider a convenient generic parametrization of the Dirac neutrino Yukawa coupling matrix and identify the necessary condition which has to be satisfied in order to establish a direct link between leptogenesis and CP violation at low energies. In the context of the LMA solution of the solar neutrino problem, we present minimal scenarios which allow for the full determination of the cosmological baryon asymmetry and the strength of CP violation in neutrino oscillations. Some specific realizations of these minimal scenarios are considered. The question of the relative sign between the baryon asymmetry and CP violation at low energies is also discussed.Comment: 36 pages, 5 figures; minor corrections and references updated. Final version to appear in Phys. Rev.

    From weak-scale observables to leptogenesis

    Get PDF
    Thermal leptogenesis is an attractive mechanism for generating the baryon asymmetry of the Universe. However, in supersymmetric models, the parameter space is severely restricted by the gravitino bound on the reheat temperature TRHT_{RH}. For hierarchical light neutrino masses, it is shown that thermal leptogenesis {\it can} work when TRH109T_{RH} \sim 10^{9} GeV. The low-energy observable consequences of this scenario are BR(τγ)108109 BR(\tau \to \ell \gamma) \sim 10^{-8} - 10^{-9} . For higher TRHT_{RH}, thermal leptogenesis works in a larger area of parameter space, whose observable consequences are more ambiguous. A parametrisation of the seesaw in terms of weak-scale inputs is used, so the results are independent of the texture chosen for the GUT-scale Yukawa matrices.Comment: a few references adde

    Hierarchical Neutrino Mass Matrices, CP violation and Leptogenesis

    Full text link
    In this work we study examples of hierarchical neutrino mass matrices inspired by family symmetries, compatible with experiments on neutrino oscillations, and for which there is a connection among the low energy CP violation phase associated to neutrino oscillations, the phases appearing in the amplitude of neutrinoless double beta decay, and the phases relevant for leptogenesis. In particular, we determine the predictions from a texture based on an underlying SU(3) family symmetry together with a GUT symmetry, and a strong hierarchy for the masses of the heavy right handed Majorana masses. We also give some examples of inverted hierarchies of neutrino masses, which may be motivated in the context of U(1) family symmetries.Comment: 34 pages. Replaced with published version -typos, corrections and references adde
    corecore