273 research outputs found
Semileptonic form factors - a model-independent approach
We demonstrate that the B->D(*) l nu form factors can be accurately predicted
given the slope parameter rho^2 of the Isgur-Wise function. Only weak
assumptions, consistent with lattice results, on the wavefunction for the light
degrees of freedom are required to establish this result. We observe that the
QCD and 1/m_Q corrections can be systematically represented by an effective
Isgur-Wise function of shifted slope. This greatly simplifies the analysis of
semileptonic B decay. We also investigate what the available semileptonic data
can tell us about lattice QCD and Heavy Quark Effective Theory. A rigorous
identity relating the form factor slope difference rho_D^2-rho_A1^2 to a
combination of form factor intercepts is found. The identity provides a means
of checking theoretically evaluated intercepts with experiment.Comment: 18 pages, Revtex, 4 postscript figures, uses epsfig.st
Quantifying Quantum Correlations in Fermionic Systems using Witness Operators
We present a method to quantify quantum correlations in arbitrary systems of
indistinguishable fermions using witness operators. The method associates the
problem of finding the optimal entan- glement witness of a state with a class
of problems known as semidefinite programs (SDPs), which can be solved
efficiently with arbitrary accuracy. Based on these optimal witnesses, we
introduce a measure of quantum correlations which has an interpretation
analogous to the Generalized Robust- ness of entanglement. We also extend the
notion of quantum discord to the case of indistinguishable fermions, and
propose a geometric quantifier, which is compared to our entanglement measure.
Our numerical results show a remarkable equivalence between the proposed
Generalized Robustness and the Schliemann concurrence, which are equal for pure
states. For mixed states, the Schliemann con- currence presents itself as an
upper bound for the Generalized Robustness. The quantum discord is also found
to be an upper bound for the entanglement.Comment: 7 pages, 6 figures, Accepted for publication in Quantum Information
Processin
Power counting and effective field theory for charmonium
We hypothesize that the correct power counting for charmonia is in the
parameter Lambda_QCD/m_c, but is not based purely on dimensional analysis (as
is HQET). This power counting leads to predictions which differ from those
resulting from the usual velocity power counting rules of NRQCD. In particular,
we show that while Lambda_QCD/m_c power counting preserves the empirically
verified predictions of spin symmetry in decays, it also leads to new
predictions which include: A hierarchy between spin singlet and triplet octet
matrix elements in the J/psi system. A quenching of the net polarization in
production at large transverse momentum. No end point enhancement in radiative
decays. We discuss explicit tests which can differentiate between the
traditional and new theories of NRQCD.Comment: 18 pages, 1 figure Replaced plot of the psi polarization parameter
alpha as a function of transverse momentum. Alpha is now closer to zero for
large transverse moment
An approach to construct wave packets with complete classical-quantum correspondence in non-relativistic quantum mechanics
We introduce a method to construct wave packets with complete classical and
quantum correspondence in one-dimensional non-relativistic quantum mechanics.
First, we consider two similar oscillators with equal total energy. In
classical domain, we can easily solve this model and obtain the trajectories in
the space of variables. This picture in the quantum level is equivalent with a
hyperbolic partial differential equation which gives us a freedom for choosing
the initial wave function and its initial slope. By taking advantage of this
freedom, we propose a method to choose an appropriate initial condition which
is independent from the form of the oscillators. We then construct the wave
packets for some cases and show that these wave packets closely follow the
whole classical trajectories and peak on them. Moreover, we use de-Broglie Bohm
interpretation of quantum mechanics to quantify this correspondence and show
that the resulting Bohmian trajectories are also in a complete agreement with
their classical counterparts.Comment: 15 pages, 13 figures, to appear in International Journal of
Theoretical Physic
Temporal structure of stimulated-Brillouin-scattering reflectivity considering transversal-mode development
The time-resolved reflectivity of optical phase conjugation by stimulated Brillouin scattering ~SBS! is investigated both theoretically and experimentally. A three-dimensional and transient model of SBS is developed to compare the experimental and theoretical results. Noise initiation of the SBS process is included in the model to simulate the shot-to-shot variation in the reflectivity and the Stokes temporal profile.Shahraam Afshaarvahid, Axel Heuer, Ralf Menzel, and Jesper Munc
Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation
The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP violation, which is necessary for the existence of such
electric dipole moments, are presented. These include the standard model of
particle physics and various extensions of it. Effective hadron level combined
charge conjugation (C) and parity (P) symmetry violating interactions are
derived taking into consideration different ways in which a nucleon interacts
with other nucleons as well as with electrons. Nuclear structure calculations
of the CP-odd nuclear Schiff moment are discussed using the shell model and
other theoretical approaches. Results of the calculations of atomic electric
dipole moments due to the interaction of the nuclear Schiff moment with the
electrons and the P and time-reversal (T) symmetry violating
tensor-pseudotensor electron-nucleus are elucidated using different
relativistic many-body theories. The principles of the measurement of the
electric dipole moments of diamagnetic atoms are outlined. Upper limits for the
nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained
combining the results of atomic experiments and relativistic many-body
theories. The coefficients for the different sources of CP violation have been
estimated at the elementary particle level for all the diamagnetic atoms of
current experimental interest and their implications for physics beyond the
standard model is discussed. Possible improvements of the current results of
the measurements as well as quantum chromodynamics, nuclear and atomic
calculations are suggested.Comment: 46 pages, 19 tables and 16 figures. A review article accepted for
EPJ
How Biology Became Social and What It Means for Social Theory
In this paper I first offer a systematic outline of a series of conceptual novelties in
the life-sciences that have favoured, over the last three decades, the emergence of a
more social view of biology. I focus in particular on three areas of investigation: (1)
technical changes in evolutionary literature that have provoked a rethinking of the
possibility of altruism, morality and prosocial behaviours in evolution; (2) changes
in neuroscience, from an understanding of the brain as an isolated data processor to
the ultrasocial and multiply connected social brain of contemporary neuroscience;
and (3) changes in molecular biology, from the view of the gene as an autonomous
master of development to the ‘reactive genome’ of the new emerging field of
molecular epigenetics. In the second section I reflect on the possible implications for
the social sciences of this novel biosocial terrain and argue that the postgenomic
language of extended epigenetic inheritance and blurring of the nature/nurture
boundaries will be as provocative for neo-Darwinism as it is for the social sciences
as we have known them. Signs of a new biosocial language are emerging in several
social-science disciplines and this may represent an exciting theoretical novelty for
twenty-first social theory
Analytical Results for Individual and Group Selection of Any Intensity
The idea of evolutionary game theory is to relate the payoff of a game to reproductive success (= fitness). An underlying assumption in most models is that fitness is a linear function of the payoff. For stochastic evolutionary dynamics in finite populations, this leads to analytical results in the limit of weak selection, where the game has a small effect on overall fitness. But this linear function makes the analysis of strong selection difficult. Here, we show that analytical results can be obtained for any intensity of selection, if fitness is defined as an exponential function of payoff. This approach also works for group selection (= multi-level selection). We discuss the difference between our approach and that of inclusive fitness theory
- …