881 research outputs found
Cosmological Magnetic Fields from Primordial Helical Seeds
Most early Universe scenarios predict negligible magnetic fields on
cosmological scales if they are unprocessed during subsequent expansion of the
Universe. We present a new numerical treatment of the evolution of primordial
fields and apply it to weakly helical seeds as they occur in certain early
Universe scenarios. We find that initial helicities not much larger than the
baryon to photon number can lead to fields of about 10^{-13} Gauss with
coherence scales slightly below a kilo-parsec today.Comment: 4 revtex pages, 2 postscript figures include
On-disk coronal rain
Small and elongated, cool and dense blob-like structures are being reported
with high resolution telescopes in physically different regions throughout the
solar atmosphere. Their detection and the understanding of their formation,
morphology and thermodynamical characteristics can provide important
information on their hosting environment, especially concerning the magnetic
field, whose understanding constitutes a major problem in solar physics. An
example of such blobs is coronal rain, a phenomenon of thermal non- equilibrium
observed in active region loops, which consists of cool and dense chromospheric
blobs falling along loop-like paths from coronal heights. So far, only off-limb
coronal rain has been observed and few reports on the phenomenon exist. In the
present work, several datasets of on-disk H{\alpha} observations with the CRisp
Imaging SpectroPolarimeter (CRISP) at the Swedish 1-m Solar Telescope (SST) are
analyzed. A special family of on-disk blobs is selected for each dataset and a
statistical analysis is carried out on their dynamics, morphology and
temperatures. All characteristics present distributions which are very similar
to reported coronal rain statistics. We discuss possible interpretations
considering other similar blob-like structures reported so far and show that a
coronal rain interpretation is the most likely one. Their chromospheric nature
and the projection effects (which eliminate all direct possibility of height
estimation) on one side, and their small sizes, fast dynamics, and especially,
their faint character (offering low contrast with the background intensity) on
the other side, are found as the main causes for the absence until now of the
detection of this on-disk coronal rain counterpart.Comment: 18 pages, 10 figures. Accepted for Solar Physic
Cosmological Magnetic Fields from Primordial Helicity
Primordial magnetic fields may account for all or part of the fields observed
in galaxies. We consider the evolution of the magnetic fields created by
pseudoscalar effects in the early universe. Such processes can create
force-free fields of maximal helicity; we show that for such a field magnetic
energy inverse cascades to larger scales than it would have solely by flux
freezing and cosmic expansion. For fields generated at the electroweak phase
transition, we find that the predicted wavelength today can in principle be as
large as 10 kpc, and the field strength can be as large as 10^{-10} G.Comment: 13 page
Thermal instability in ionized plasma
We study magnetothermal instability in the ionized plasmas including the
effects of Ohmic, ambipolar and Hall diffusion. Magnetic field in the single
fluid approximation does not allow transverse thermal condensations, however,
non-ideal effects highly diminish the stabilizing role of the magnetic field in
thermally unstable plasmas. Therefore, enhanced growth rate of thermal
condensation modes in the presence of the diffusion mechanisms speed up the
rate of structure formation.Comment: Accepted for publication in Astrophysics & Space Scienc
The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil
The critical-velocity behavior of oscillatory superfluid Helium-4 flow
through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil
has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up
to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during
which the frequency remained below 400 Hz, the critical velocity was a
nearly-linearly decreasing function of increasing temperature throughout the
region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi
phase slips could be observed at the onset of dissipation. In runs with
frequencies higher than 400 Hz, downward curvature was observed in the decrease
of critical velocity with increasing temperature. In addition, above 500 Hz an
alteration in supercritical behavior was seen at the lower temperatures,
involving the appearance of large energy-loss events. These irregular events
typically lasted a few tens of half-cycles of oscillation and could involve
hundreds of times more energy loss than would have occurred in a single
complete 2 Pi phase slip at maximum flow. The temperatures at which this
altered behavior was observed rose with frequency, from ~ 0.6 K and below, at
500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203
Modeling of Photoionized Plasmas
In this paper I review the motivation and current status of modeling of
plasmas exposed to strong radiation fields, as it applies to the study of
cosmic X-ray sources. This includes some of the astrophysical issues which can
be addressed, the ingredients for the models, the current computational tools,
the limitations imposed by currently available atomic data, and the validity of
some of the standard assumptions. I will also discuss ideas for the future:
challenges associated with future missions, opportunities presented by improved
computers, and goals for atomic data collection.Comment: 17 pages, 8 figures, to appear in the proceedings of Xray2010,
Utrecht, the Netherlands, March 15-17 201
On the variation of the gauge couplings during inflation
It is shown that the evolution of the (Abelian) gauge coupling during an
inflationary phase of de Sitter type drives the growth of the two-point
function of the magnetic inhomogeneities. After examining the constraints on
the variation of the gauge coupling arising in a standard model of inflationary
and post-inflationary evolution, magnetohydrodynamical equations are
generalized to the case of time evolving gauge coupling. It is argued that
large scale magnetic fields can be copiously generated. Other possible
implications of the model are outlined.Comment: 5 pages in RevTex style, one figur
Interstellar MHD Turbulence and Star Formation
This chapter reviews the nature of turbulence in the Galactic interstellar
medium (ISM) and its connections to the star formation (SF) process. The ISM is
turbulent, magnetized, self-gravitating, and is subject to heating and cooling
processes that control its thermodynamic behavior. The turbulence in the warm
and hot ionized components of the ISM appears to be trans- or subsonic, and
thus to behave nearly incompressibly. However, the neutral warm and cold
components are highly compressible, as a consequence of both thermal
instability in the atomic gas and of moderately-to-strongly supersonic motions
in the roughly isothermal cold atomic and molecular components. Within this
context, we discuss: i) the production and statistical distribution of
turbulent density fluctuations in both isothermal and polytropic media; ii) the
nature of the clumps produced by thermal instability, noting that, contrary to
classical ideas, they in general accrete mass from their environment; iii) the
density-magnetic field correlation (or lack thereof) in turbulent density
fluctuations, as a consequence of the superposition of the different wave modes
in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio
(MFR) in density fluctuations as they are built up by dynamic compressions; v)
the formation of cold, dense clouds aided by thermal instability; vi) the
expectation that star-forming molecular clouds are likely to be undergoing
global gravitational contraction, rather than being near equilibrium, and vii)
the regulation of the star formation rate (SFR) in such gravitationally
contracting clouds by stellar feedback which, rather than keeping the clouds
from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse
Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as
per referee's recommendation
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
Large-scale magnetic fields from inflation due to a -even Chern-Simons-like term with Kalb-Ramond and scalar fields
We investigate the generation of large-scale magnetic fields due to the
breaking of the conformal invariance in the electromagnetic field through the
-even dimension-six Chern-Simons-like effective interaction with a fermion
current by taking account of the dynamical Kalb-Ramond and scalar fields in
inflationary cosmology. It is explicitly demonstrated that the magnetic fields
on 1Mpc scale with the field strength of G at the present time
can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys.
J.
- …
